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Statistical Significance

1 Introduction

Given that we have a set x̃ of data and a desired level of significance s, we want a function
ttest(x̃, s) which can be either zero or one. If the value is one then the function tells us that
the sample mean of the dataset x̃ is significantly different from zero, at level s. Similarly, if
we have two datasets x̃1, x̃2 then we want a function ttest(x̃1, x̃2, s) that tells us whether
or not the two datasets have a significantly different mean, at level s.

Such functions are hypothesis test functions. They aim at testing whether or not some null
hypothesis can be rejected on the basis of a given data set. The null hypothesis is assumed
to be the stronger one: There has to be good evidence against the null hypothesis in order to
reject it. Usually, the aim of the researcher is to reject the null hypothesis at a high level of
significance, so that the alternative hypothesis, the negation of the null hypothesis, which is
the hypothesis of the researcher himself, is to be accepted by the scientific community.

The theory of hypothesis testing is very elaborate and we can only give a very brief and rough
sketch here.

In the first case above, the null hypothesis would be that the mean of the underlying random
variable is equal to zero. In the second case the null hypothesis would be that the mean of
the underlying random variables is equal.

2 Samples

While a random variable is an abstract concept, a sample is concrete collection of data. More
precisely, a sample x̃ = (x1, . . . , xN ) is a finite sequence of N independent realizations of
one and the same random variable x̂. A real-valued function of a sample is called a statistic.
The most important statistics of a sample x̃ are the sample mean,

µ(x̃) :=
1

N

N∑
n=1

xn, (1)

and the sample variance

σ2(x̃) :=
1

N − 1

N∑
n=1

(xn − µ(x̃))2. (2)
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These two statistics are so important because they are good estimators of the mean and the
variance of the underlying random variable x̂, meaning that for large sample sizeN →∞,

µ(x̃) → µ(x̂) (3)

σ2(x̃) → σ2(x̂), (4)

where µ(x̂) and σ2(x̂) are the mean and the variance of the random variable x̂. It is crucial
to keep in mind the distinction between the sample x̃ and the underlying random variable
x̂. A random variable x̂ is defined by an apriori probability distribution p(x), while the
corresponding sample x̃ is a set of aposteriori data. We can estimate the probability p(x)
of the random variable x̂ taking the value x by

p(x) =
n(x)

N
, (5)

where n(x) is the number of occurrences of the value x in the sample x̃ and N is the
sample size, that is, the number of elements in x̃. If x̂ is a continuous random variable,
however, then any particular x in the sample will occur at most once and an estimation
is impossible. Thus, in the real world we can only estimate a discretization of x̂ which
is not unique and depends on several free parameters like the binning size and the upper
and lower cutoff. Also, estimating the probability distribution from the data requires a very
large sample size. On the other hand, estimating particular functions like the mean and the
variance can be accomplished already with relatively small sample sizes. This is why mostly
one is not interested in the probability distribution of the underlying random variable and
rather concentrates on certain statistics, that is, on certain functions of the dataset.

3 Estimators

As we have already seen, the sample mean and the sample variance are good estimators for
the mean and the variance of the underlying random variable. But what means a “good”
estimator?

Actually, an estimator is not a statistic, that is, a real-valued function of a sample, but
rather it is a random variable. Say we have a statistic θ = θ(x̃) = θ(x1, . . . , xN ) of a
sample x̃ = (x1, . . . xN ) of N realizations of the random variable x̂. Then the corresponding
estimator of θ is defined as

θ̂ := θ(x̂1, . . . , x̂N ), (6)

where
x̂1 = . . . = x̂N = x̂. (7)

The motivation is the folllowing. If I have a random variable x̂ and I let them realize N times
then this sample of N realizations will be different whenever I repeat the same procedure and
let x̂ realize another N times. Thus, the entire sequence of realizations x̃ = (x1, . . . , xN )
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can itself be described by a random variable, namely a sequence of N identical copies of the
original random variable x̂,

ˆ̃x := (x̂1, . . . , x̂N ), (8)

where x̂1 = . . . = x̂N = x̂. Each time I draw the random variable ˆ̃x, I obtain another
sequence of N realizations of x̂.

An estimator is unbiased if for any sample size N we have

〈θ̂〉 = θ, (9)

otherwise it is biased. The bias is defined by

B(θ̂) := 〈θ̂〉 − θ. (10)

An estimator is consistent if for large sample size N the probability to fail the true value θ
goes to zero,

P{|θ̂ − θ| > ε} → 0 (11)

for N →∞ and arbitrarily small ε > 0.

For a given sample x̃ the estimation of some parameter θ will fail by a certain amount. The
expected amount of failure, the mean square error is related to the overall goodness of the
estimator,

MSE(θ̂) := 〈(θ̂ − θ)2〉, (12)

which is equal to

MSE(θ̂) = σ2(θ̂) +B2(θ̂). (13)

4 Estimating mean and variance

Say, there is a continuous random variable x̂ with mean µ and variance σ2, and we have
measured the random variable x̂ exactly N times. The set of results x̃ = {x1, . . . , xN} then
constitutes a sample of size N . We now estimate the mean µ of the random variable x̂ by
the sample mean µ(x̃) defined by

µ(x̃) :=
1

N

N∑
n=1

xn, (14)

as already introduced in (1), so that µ(x̃) → µ for N → ∞. We know that the larger N ,
the better the estimate of µ. But how confident can we be about an estimate of µ based
on a particular sample of size N?
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The question is solved by considering the sample mean itself as a random variable, namely
the estimator of the mean µ,

µ̂ :=
1

N

N∑
i=1

x̂i, (15)

where all random variables x̂i are identical copies of the variable of interest, x̂i = x̂. The
expectation value of µ̂ is then identical to the mean,

〈µ̂〉 = 〈 1

N

N∑
i=1

x̂i〉 (16)

=
1

N

N∑
i=1

〈x̂i〉 (17)

=
1

N
N〈x̂〉 = µ, (18)

and, as variances simply add up, the variance σ2µ of µ̂ equals

σ2µ = σ2(µ̂) = σ2(
1

N

N∑
i=1

x̂i) (19)

=
1

N2

N∑
i=1

σ2(x̂i) (20)

=
1

N2
Nσ2(x̂) =

σ2

N
. (21)

hence
σµ =

σ√
N

(22)

which goes to zero as N goes to infinity, thus µ̂ is a consistent estimator.

Moreover, we estimate the variance σ2 of the random variable x̂ by the statistic

σ2(x̃) :=
1

N − 1

N∑
i=1

(xi − µ(x̃))2. (23)

The corresponding estimator is given by

σ̂2 :=
1

N − 1

N∑
i=1

(x̂i − µ̂)2. (24)

One can show that the factor 1
N−1 causes the estimator to be unbiased, i.e. 〈σ̂2〉 = σ2. If

one would take a factor of 1
N instead, then there would be a small bias (which vanishes for

large N). The estimator (24) is consistent, which means that the realizations of σ̂2 approach
the true variance σ2 for large N in the probabilistic sense (11).
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5 Student’s t distribution

Now assume that the random variable x̂ with mean µ and standard deviation σ is Gaussian.
Then from (22) we infer that the random variable

ẑ =
µ̂− µ
σ/
√
N

(25)

is normally distributed, that is, it has a Gaussian distribution being centered at µz = 0 and
having a standard deviation of σz = 1. Hence, z indicates the distance from the mean in
standard deviations, often referred to as the z-score. The probability distribution of ẑ tells
us how good we can estimate the unknown mean µ from the data given that we apriorily
know the true standard deviation σ. However, we don’t know the true standard deviation
σ, so we have to estimate it by the estimator σ̂ given by (24).

Hence, the goodness of our estimation of µ depends on the probability distribution of the
random variable

t̂ =
µ̂− µ
σ̂/
√
N
. (26)

William Gosset, better known under his pseudonym “Student”, showed that t̂ has a particular
distribution which become famous as Student’s t distribution. For large N this distribution
approximates a Gaussian distribution, centered at µt = 0 and having standard deviation of
σt = 1. Explicitely, the t distribution reads

ρν(t) =
Γ((ν + 1)/2)√
νπΓ(ν/2)

(1 + t2/ν)−(ν+1)/2, (27)

where ν is the degree of freedom of the distribution. In our case we have a single random
variable which gives the simple value

ν = N − 1. (28)

The only important thing to memorize here is that ρν is independent of µ and σ. This
means: The confidence that the estimation of µ is correct does not depend on µ and σ, but
it only depends on the sample size N .

5.1 Confidence interval

Consider the event that the random variable t̂ has an outcome greater than a particular
positive number τ > 0, then this event can be rewritten as

t̂ > τ (29)

µ̂− µ
σ̂/
√
N

> τ (30)

µ̂ > µ+ τ · σ̂√
N
, (31)
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which equals the event that we overestimate the true mean µ by an amount of

u = τ · σ̂√
N
. (32)

From the above relation we see that the probability for such overestimation reads

α := P{µ̂ > µ+ u} (33)

= P{t̂ > τ} (34)

=

∫ ∞
τ

dt ρν(t) (35)

= 1−
∫ τ

−∞
dt ρν(t) (36)

= 1− Fν(τ), (37)

where

Fν(τ) =

∫ τ

−∞
dt ρν(t) (38)

is the cumulative probability distribution of the Student distribution. Since further above we
have assumed τ > 0 and since ρν(t) is symmetric about t = 0, we have

1

2
< Fν(τ) < 1, (39)

and so

0 < α <
1

2
. (40)

Similarly, the event that t̂ has an outcome smaller than −τ can be rewritten as

t̂ < −τ (41)

µ̂ < µ− τ · σ̂√
N
, (42)

which equals the event that we underestimate the true mean µ by an amount of u. As can
be easily verified, the probability of such underestimation is identical to the probability for
the overestimation of µ, due to the symmetry of the Student distribution,

P{µ̂ < µ− u} = P{µ̂ > µ+ u} = α. (43)

The complementary probability, that is the probability to either not overestimate or not
underestimate the true mean by more than u is also called the level of significance,

s := 1− α, (44)

thus we have
s = Fν(τ), (45)
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which admits values 1
2 < s < 1. Evidently, the significance level s is dependent on the value

τ and the degree of freedom ν = N −1 of the underlying probability distribution. Therefore,
if we fix a desired significance level s and a sample size N we get a value of

τν,s = F−1ν (s), (46)

where F−1ν is the inverse cumulative Student distribution and ν = N − 1. The above value
τν,s is called the Student factor and since it is not quite easy to calculate, the student factor
is tabulated in textbooks for certain common values of ν and s.

Now, the probability that the true mean µ lies in the confidence interval Ĉ = [µ̂− u, µ̂+ u]
about the estimated mean µ̂, reads

P{µ ∈ Ĉ} = 1− P{µ /∈ Ĉ} (47)

= 1− (P{µ < µ̂− u}+ P{µ > µ̂+ u}) (48)

= 1− (P{µ̂ > µ+ u}+ P{µ̂ < µ− u}) (49)

= 1− 2α (50)

= 2s− 1. (51)

So this is why we speak of a confidence interval. If we have estimated a mean µ̂ and a
standard deviation σ̂ from a data sample of size N , and we fix a desired significance level s,
then for ν = N − 1 we obtain an interval radius of

uν,s = τν,s ·
s√
N

(52)

so that with probability Pconf = 2s − 1 we can be sure that the true mean µ lies within
the range µ̂± uν,s. This corresponds to a two-tailed t-test between the estimator µ̂ and the
true mean µ, as we will see in the next section. Sometimes, the probability Pconf = 2s− 1
is itself to be indicated as the significance level. Then one should either calculate the value
s = (1+Pconf)/2 and look up the Student factor in a standard table for a one-tailed t-test or
take Pconf as the significance level and look up the Student factor in a table which is explicitely
dedicated to a two-tailed t-test. Also, it often occurs that instead of the significance level s
the value α = 1− s is denoted as the level of significance, also often denoted by the letter p
in the form p < 0.001 or something like that. Lastly, the notions of two-tailed or one-tailed
are sometimes confused, ignored or misused in the literature.

5.2 Example

Given a sample of size N = 11 with a sample mean of µ̂ = 10 and a sample variance σ̂ = 2.
According to (28) we have ν = 10 degrees of freedom. We fix a 95% confidence level, thus
s = 0.95, and look into Table 1 to get a t-value of τ = 1.812. Using (52) we thus obtain a
confidence radius of

u = 1.812 ·
√

2√
11
≈ 0.426. (53)
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It follows that the probability that the true mean lies below µ + u = 10.426 reads 95%.
Similarly, the probability that the true mean lies above µ − u = 9.574 also reads 95%.
Hence, the probability that the true mean lies in the confidence interval [9.574, 10.426] reads
Pconf = 2s− 1 = 90%.

6 Estimating two random variables

6.1 Unequal variances

Consider two Gaussian random variables x̂1, x̂2 with means µ1, µ2 and standard deviations
σ1, σ2, respectively. These variables are each realized N times, which gives the two samples
x̃1x̃2. We want to find out if the underlying random variables x̂1 and x̂2 have the same
mean or not. The estimator of the mean of each random variable is given by

µ̂k =
1

Nk

Nk∑
i=1

x̂ki, (54)

where x̂ki = x̂k for all i = 1, . . . Nk and k = 1, 2. The variance of µ̂k is given by

σµk =
σk√
Nk

. (55)

Because variances simply add up, the difference between the two estimators has the vari-
ance

σ2µ1−µ2 =
σ21
N1

+
σ22
N2

. (56)

Therefore, the random variable

ẑ =
µ̂1 − µ̂2√
σ2
1

N1
+

σ2
2

N2

(57)

is normally distributed with mean µz = 0 and variance σz = 1. Again, we don’t know the
true variances σk but have to estimate them from the data samples. The estimator of the
variance of each random variable is given by

σ̂2k =
1

Nk − 1

Nk∑
i=1

(x̂ki − µ̂i)2, (58)

so the random variable

t̂ =
µ̂1 − µ̂2√
σ̂2
1

N1
+

σ̂2
2

N2

(59)

is Student distributed with the probability density ρν(t) given in (27). Unfortunately, the
number ν of degrees of freedom is a little bit complicated to calculate. Closer investigations
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show that the number is approximated by

ν =

(
s21
N1

+
s22
N2

)2
(

s21
N1
√
N1−1

)2
+
(

s22
N2
√
N2−1

)2 , (60)

where s21, s
2
2 are the standard deviations of the samples x̃1, x̃2, respectively. The righthand

side of the formula above usually returns a noninteger value, where it is conventional to round
down to the nearest integer. A quick-and-dirty replacement for the complicated formula is
to simply take

ν = min{N1, N2}, (61)

which underestimates ν and thus gives a stronger bound for significance than necessary: The
t-value and thus the distance between the sample means needed for significance becomes
greater, so the null hypothesis is strengthened.

Asking whether x̂1 and x̂2 have the same mean or not is equivalent to asking whether the
random variable t̂ has zero mean or not. Since t̂ is Student distributed, we can apply the
same strategy as in the last section. We fix a desired significance level s, and for the sample
sizes N1, N2 given, we look up the Student factor τν,s in some textbook table to see whether
the difference µ̂1 − µ̂2 lies within the confidence interval C = [−u, u] where

u = τν,s ·

√
s21
N1

+
s22
N2

. (62)

If this is the case, then the null hypothesis cannot be rejected, which means that the two
random variables x̂1, x̂2 are not significantly different at level s. The same care with one-
tailed and two-tailed t-tests as in the previous section must also be taken here. By default,
the tables list Student factors for the one-tailed t-test. This means that the significance
level s refers to the null hypothesis of either µ1 < µ2 or µ1 > µ2 being rejected (which
both occurs with the same probability). To reject the null hypothesis µ1 = µ2, one has
to put up a Student factor from a table that is explicitely dedicated to a two-tailed t-test.
Alternatively, one calculates s′ = 2s − 1 and looks for the Student factor corresponding to
significance level s′ in a standard table dedicated to a one-tailed t-test. It is convenient to
indicate the significance not by s but rather by the complementary value α = 1 − s which
represents the probability for falsely rejecting the null hypothesis, a so-called “false positive”.
In this unhappy case, the random variables x̂1 and x̂2 are considered to have different mean
although they have not.

6.2 Equal variances

If the variances of x̂1, x̂2 are assumed to be equal, then one can optimize the test. Instead of
considering the separate estimations of each variance one considers the pooled variance

σ̂2p =
(N1 − 1)σ̂21 + (N2 − 1)σ̂22

N1 +N2 − 2
, (63)
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which is sort of an average between the two individual variances σ̂21 and σ̂22. Now we insert
this pooled variance for σ̂1 and σ̂2 into (59) and obtain

t̂ =
µ̂1 − µ̂2√

(N1−1)σ̂2
1+(N2−1)σ̂2

2
N1+N2−2

(
1
N1

+ 1
N2

) (64)

Although the above formula is more complicated than the one for unequal variances, we now
have an easier time calculating the degrees of freedom,

ν = N1 +N2 − 2. (65)

6.3 The t-value

We may also use the t-value directly to see the actual level of significance that the two
random variables x̂1, x̂2 differ in their mean. First, we calculate the t-value according to (59)
or (64), and then we calculate the degrees of freedom according to (60) or (65), respectively.
Then we look up a table of t-values in the row where the number of degrees of freedom
equals our own value of ν. The t-value in the table row which is just below our own t-value
then reveals the level of significance s.

10



ν
Significance s

0.75 0.875 0.90 0.95 0.975 0.99 0.995 0.999

1 1.000 2.414 3.078 6.314 12.706 31.821 63.657 318.309
2 0.817 1.604 1.886 2.920 4.303 6.965 9.925 22.327
3 0.765 1.423 1.638 2.353 3.182 4.541 5.841 10.215
4 0.741 1.344 1.533 2.132 2.776 3.747 4.604 7.173
5 0.727 1.301 1.476 2.015 2.571 3.365 4.032 5.893
6 0.718 1.273 1.440 1.943 2.447 3.143 3.707 5.208
7 0.711 1.254 1.415 1.895 2.365 2.998 3.499 4.785
8 0.706 1.240 1.397 1.860 2.306 2.896 3.355 4.501
9 0.703 1.230 1.383 1.833 2.262 2.821 3.250 4.297

10 0.700 1.221 1.372 1.812 2.228 2.764 3.169 4.144
11 0.697 1.214 1.363 1.796 2.201 2.718 3.106 4.025
12 0.695 1.209 1.356 1.782 2.179 2.681 3.055 3.930
13 0.694 1.204 1.350 1.771 2.160 2.650 3.012 3.852
14 0.692 1.200 1.345 1.761 2.145 2.624 2.977 3.787
15 0.691 1.197 1.341 1.753 2.131 2.602 2.947 3.733
16 0.690 1.194 1.337 1.746 2.120 2.583 2.921 3.686
17 0.689 1.191 1.333 1.740 2.110 2.567 2.898 3.646
18 0.688 1.189 1.330 1.734 2.101 2.552 2.878 3.611
19 0.688 1.187 1.328 1.729 2.093 2.539 2.861 3.579
20 0.687 1.185 1.325 1.725 2.086 2.528 2.845 3.552
21 0.686 1.183 1.323 1.721 2.080 2.518 2.831 3.527
22 0.686 1.182 1.321 1.717 2.074 2.508 2.819 3.505
23 0.685 1.180 1.319 1.714 2.069 2.500 2.807 3.485
24 0.685 1.179 1.318 1.711 2.064 2.492 2.797 3.467
25 0.684 1.178 1.316 1.708 2.060 2.485 2.787 3.450
26 0.684 1.177 1.315 1.706 2.056 2.479 2.779 3.435
27 0.684 1.176 1.314 1.703 2.052 2.473 2.771 3.421
28 0.683 1.175 1.313 1.701 2.048 2.467 2.763 3.408
29 0.683 1.174 1.311 1.699 2.045 2.462 2.756 3.396
30 0.683 1.173 1.310 1.697 2.042 2.457 2.750 3.385
40 0.681 1.167 1.303 1.684 2.021 2.423 2.704 3.307
50 0.679 1.164 1.299 1.676 2.009 2.403 2.678 3.261
60 0.679 1.162 1.296 1.671 2.000 2.390 2.660 3.232
70 0.678 1.160 1.294 1.667 1.994 2.381 2.648 3.211
80 0.678 1.159 1.292 1.664 1.990 2.374 2.639 3.195
90 0.677 1.158 1.291 1.662 1.987 2.368 2.632 3.183

100 0.677 1.157 1.290 1.660 1.984 2.364 2.626 3.174
200 0.676 1.154 1.286 1.653 1.972 2.345 2.601 3.131
300 – – 1.284 1.650 1.968 2.339 2.592 3.118
400 – – 1.284 1.649 1.966 2.336 2.588 3.111
500 0.675 1.152 1.283 1.648 1.965 2.334 2.586 3.107
∞ 0.674 1.150 1.282 1.645 1.960 2.326 2.576 3.090

Table 1: Table of Student’s t-values for various degrees of freedom ν and significance levels
s, for the case of a one-tailed t-test.
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