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1 Psychophysical Tasks

In a psychophysical task, stimuli are presented to the subject and then the subject is asked
for some formerly specified reaction. Psychophysical tasks can roughly be devided into three
distinct types:

1. Detection

2. Discrimination

3. Identification

In a detection task, on each trial a stimulus is presented to the subject, and the subject is
asked to report whether or not it detects the stimulus. The proportion of detected stimuli is
called the detect rate and it constitutes the psychometric curve of the task.

In a discrimination task, on each trial one out of n distinct stimuli is presented to the subject,
and the subject is asked to report which of the n stimuli it perceives. The proportion of
correct answers is called the proportion correct and it constitutes the psychometric curve of
the task.
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In an identification task, on each trial n distinct stimuli are presented to the subject, and
the subject is asked to identify them. This type of psychophysical task is also called an
n-alternative forced choice (nAFC) task. Just like in the discrimination task, the proportion
of correct answers is called the proportion correct and it constitutes the psychometric curve
of the task.

In many discrimination and identification tasks there are n = 2 distinct stimuli, which are
often called the signal and the nonsignal stimulus.

The signal detection model is an abstract model of perception that is able to cope with all
three types of psychophysical tasks (see Fig. 1).
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Figure 1: General scheme of the signal detection model.

2 Detection task

In a detection task, the subject is presented on each trial a stimulus and she must then decide
whether or not he perceives a specific stimulus property x. For example, the parameter x
might be the stimulus’ contrast, its motion or its rotation. The stimulus property x is varied
within a certain domain on each trial, either randomly or systematically.

Let us first assume that the detection process is perfect. In this case the stimulus property x
is encoded by a sensory unit in the brain into a neuronal response yx, which can be the firing
rate of a single neuron or the overall activity of a specific neuron population. Let us call
the function that maps the stimulus property x to its neuronal response yx the transducer
function τ :

x
τ7−→ yx. (1)

The neuronal response yx = τ(x) is sent to a decision unit and translated into a discrete
response which is sent to some motoric unit to produce a behavioural reaction. We may
leave out the motoric unit from our description if it is directly related to the output of the
decision unit. In the following we will concentrate on binary decisions, so the behavioural
response can take one out of two distinct values, for example Yes or No.
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Figure 2: A perfect detection process.

Here is where the notion of a threshold enters in a natural way. Whenever the neuronal
response yx lies above a certain internal threshold k, the response is positive, otherwise neg-
ative. Let us assume that the threshold value is generated by some other internal unit of the
brain, the control unit, and sent to the decision unit for comparison with the representation
yx. The decision unit maps it onto a behavioural response r which is either 1 or 0, dependent
on the condition that the neuronal response is bigger that the threshold or not. Let us call
this map the decision function ζ:

(y, k)
ζ7−→ r. (2)

The entire detection process is depicted in Fig. 2.

For fixed threshold k and given input x the response rx = ζ(τ(x), k) reads

rx = θ(yx − k), (3)

where

θ(x) :=

{
1 x ≥ 0
0 x < 0

(4)

is the Heaviside step function.

Now let us become more realistic and assume that the detection process is not perfect.
We account for the imperfection by adding noise to the system. Let us first clarify what
we understand by the term “noise” throughout this paper. Noise is not understood as a
fluctuation over time or space or both. Instead, noise is represented by a random variable
that takes a different value on each trial. The average over many trials approaches the
expectation value of the random variable. In short: Noise, in the way we use it here, is
random fluctuations over trials. The degree of these trial-by-trial fluctuations is termed the
variability.

This being clarified, we now account for imperfections of the sensory unit and assume that
the transducer function τ maps the stimulus property x onto a random variable Yx,

x
τ7−→ Yx. (5)
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Figure 3: The detection process.

The random variable Yx has realizations y ∈ R which are distributed by an transducer
probability q(y|x) so that for any x ∈ R we have∫

dy q(y|x) = 1. (6)

The function q(y|x) corresponds to the conditional probability of encoding the given input
x into the neuronal response y. The above completeness relation means that an input x
is encoded into some neuronal response. As usual, the expectation value of some function
f(Yx) is obtained by

〈f(Yx)〉 =
∫

dy q(y|x) f(y). (7)

For the sake of simplicity, we will not account for imperfections of the control unit which
would correspond to replacing the sharp threshold value k by a random variable K.

The output of the decision unit becomes a random variable

Rx = θ(Yx − k). (8)

The expectation value of Rx equals the fraction of positive responses, and it is called the
detect rate,

D(x) = 〈Rx〉, (9)

which yields

D(x) =
∫

dy q(y|x) θ(y − k) (10)

=
∫ ∞

k
dy q(y|x). (11)

The entire detection process is depicted in Fig. 4 and 3.
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Figure 4: The detection process with an imperfect sensory unit.

3 Discrimation task

In a binary discrimination task, the subject is on each trial presented randomly one out of
two distinct stimuli and she must then decide which of the stimuli she perceives. Often, one
of the stimuli is called the signal and the other one the nonsignal stimulus. Let us follow
this convention and denote the signal and nonsignal stimulus by s and n, respectively, and
the property of the signal stimulus by xs and that of the nonsignal stimulus by xn. The
perceptual system of the subject will then adapt its internal threshold in such a way that
both stimuli can optimally be distinguished. The subject’s response is either “s” or “n”
corresponding to whether she perceives the signal or the nonsignal stimulus.

3.1 Possible situations

In contrast to the detection task, where there is either a detect or nondetect situation, we
now have four different situations:

(s|s) = hit (12)

(n|s) = miss (13)

(s|n) = false alarm (14)

(n|n) = correct rejection. (15)

Let us look for the probabilities of these events.

The signal and nonsignal stimuli xs and xn are translated by the sensory unit into the
neuronal responses Ys and Yn, respectively,

xi 7→ Yi i = s, n. (16)

Let us constitute without loss of generality that the signal stimulus produces the higher
average neuronal response,

〈Ys〉 ≥ 〈Yn〉. (17)
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Since xs produces the higher neuronal response Ys, the subject will answer “s” if the neuronal
repsonse happens to lie above the adapted internal threshold k, and otherwise she will answer
“n”.

Thus, the probability of a hit depends on the internal threshold parameter k and is given
by

Pk(s|s) = P (Ys ≥ k) (18)

=
∫

dy q(y|xs) θ(y − k) (19)

=
∫ ∞

k
dy q(y|xs). (20)

The miss probability is given by

Pk(n|s) = P (Ys < k) = 1− P (Ys ≥ k) (21)

= 1− Pk(s|s), (22)

so that hit and miss probability add up to unity,

Pk(s|s) + Pk(n|s) = 1. (23)

The probability of a false alarm reads

Pk(s|n) = Pk(Yn ≥ k) (24)

=
∫

dy q(y|xn) θ(y − k) (25)

=
∫ ∞

k
dy q(y|xn), (26)

and it is easy to see that the probabilities for false alarm and correct rejection also add up
to unity,

Pk(s|n) + Pk(n|n) = 1. (27)

In plain words:

hit rate + miss rate = 1 (28)

false alarm rate + correct rejection rate = 1. (29)

As we can see there are exactly two degrees of freedom. Conventionally, the hit rate

HRk := Pk(s|s) (30)

and the false alarm rate
FARk := Pk(s|n) (31)

are chosen as the two parameters that uniquely describe the performance of the subject within
a binary discrimination task. The probabilities are estimated by a large sample of trials of
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either signal or nonsignal stimuli presentation. If the number of an event x is denoted by
N(x), then the hit rate and the false alarm rate are estimated by

Pk(s|s) ≈
N(s|s)
N(s)

(32)

Pk(s|n) ≈ N(s|n)
N(n)

. (33)

3.2 Success probability

The overall performance of the subject is measured by the success probability, which is also
referred to as the proportion correct or percent correct. The success probability is obtained
in the following way. While (y|x) is the conditional event of y occurring under the condition
that x has already occurred, the joint event (y, x) denotes the joint occurrence of x and
y, and of course we have (y, x) = (x, y). The joint probability Pk(y, x) is related to the
conditional probability Pk(y|x) and the apriori probability P (x) of x via

Pk(y, x) = Pk(y|x)P (x). (34)

The success probability is now given by

PCk = Pk(s, s) + Pk(n, n), (35)

which can be decomposed as

PCk = Pk(s|s)P (s) + Pk(n|n)P (n) (36)

= Pk(s|s)P (s) + Pk(n|n)(1− P (s)) (37)

= Pk(s|s)P (s) + (1− Pk(s|n))(1− P (s)), (38)

because P (s)+P (n) = 1. Commonly, the experimenter will chose P (s) = 1/2, so that

PCk =
Pk(s|s) + (1− Pk(s|n)

2
. (39)

Substituting the notations HRk = Pk(s|s) for the hit rate and FARk = Pk(s|n) for the false
alarm rate, we can write the success probability as

PCk =
HRk + 1− FARk

2
. (40)

3.3 ROC curve

We see that almost all the probabilities depend on the internal threshold k. For a fixed k
there will be a fixed pair of values (HRk,FARk) that uniquely describe the performance of
the subject in the given discrimination task. If we now urge the subject towards a positive
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or negative response, we will obtain a response bias which has its origin in a shift of the
internal threshold k. If we then plot the points (HRk,FARk) for different response biases,
and therefore for different (but generally unknown) values of k, then we obtain the Receiver
Operating Characteristic (ROC) curve:

ROC := {(HRk,FARk) | k}. (41)

A typical ROC curve is shown in Fig. 5.
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Figure 5: Typical ROC curve in a binary discrimination task.

Assume that the subject is completely blind. Whatever the stimulus, the response of the
subject will be totally random. Given the subject is initially unbiased, it will respond “s” and
“n” with equal probability 1/2. Thus, the hit rate and the false alarm rate will both be 1/2.
If we now urge the subject towards a positive response, she will hit the signal stimulus by
chance more often, so that HR = 0.7, say. But the false alarm will rise in exactly the same
way, hence FAR = 0.7. So whatever the response bias, the hit rate and the false alarm rate
will be of equal magnitude, because the blind subject cannot discriminate between signal and
nonsignal stimulus. The ROC curve corresponding to a blind subject will be a diagonal (blue
line in Fig. 5). The area under the curve (AUC) of this diagonal reads 0.5. If the subject is
not totally blind, the performance will be a little better, so the hit rate will lie slightly above
the false alarm rate. As a consequence, the area under the curve will be bigger than 0.5.
Is the subject an ideal observer, then the hit rate will constantly be unity for all false alarm
rates, and the corresponding area will also become unity. Thus, the area under the ROC
curve is a good measure for the overall performance of the subject independently from the
internal threshold k:

AUC :=
∫

ROC. (42)

A family of ROC lines for different performances is depicted in Fig. 6.

In the next section we will relate the AUC to the success probability of a corresponding
identification task, namely the two-alternative forced choice task.
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Figure 6: Typical ROC curves for different levels of performance.

4 Identification task

In a binary identification task the subject is on each trial presented two stimuli and she
must then indicate which stimulus is which. This kind of task is also referred to as a Two-
alternative forced choice (2AFC) task. As in the previous section, let us call one stimulus
the signal stimulus and the other the nonsignal stimulus.

In contrast to the discrimination task, where there are four different situations, in the 2AFC
there are only 2 situations: A correct and a false choice.

As in the discirmination task, the signal and nonsignal stimuli xs and xn are translated by
the sensory unit into the neuronal responses Ys and Yn, respectively,

xi 7→ Yi i = s, n. (43)

Let us again constitute without loss of generality that the signal stimulus produces the higher
average neuronal response,

〈Ys〉 ≥ 〈Yn〉. (44)

Consequently, the subject will choose the stimulus with the highest neuronal representation
as the signal stimulus, so that the probability of a correct choice reads

PC = P (Ys ≥ Yn) (45)

=
∫

dy

∫
dy′ θ(y − y′)q(y|xs)q(y′|xn). (46)

Now it is fairly easy to formally combine the above expression with the hit rate of a binary
discrimination task. Along (20) the hit rate h(k) := HRk is given by

h(k) =
∫

dy θ(y − k)q(y|xs). (47)
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Substituting this expression into (46) gives

PC =
∫

dk q(k|xn)h(k), (48)

where we have replaced y′ by k. Now because the false alarm rate f(k) := FARk is given
by

f(k) =
∫ ∞

k
dy q(y|xn) (49)

= 1−
∫ k

−∞
dy q(y|xn) (50)

we have
df

dk
= −q(k|xn), (51)

and therefore
df = −q(k|xn) dk. (52)

The limits are given by
f(−∞) = 1, f(∞) = 0, (53)

so that a substitution of (52) and (53) into (48) yields

PC =
∫ 1

0
df h(f), (54)

which is nothing but the area under the ROC curve! Altogether we find that the success
probability PC in a two-alternative forced choice paradigm corresponds to the area under
the ROC curve of the corresponding discrimination task,

PC = AUC. (55)

This is a well-known important result of signal detection theory. The significance of the
result is given by the fact that one can now compare the performance of a subject in a
discrimination task with its performance in a corresponding 2AFC task. If the subject had
an AUC of, say, 0.7 in a given discrimination task, then one knows that her performance
would be PC = 0.7 in the corresponding identification task, where the signal and nonsignal
stimulus are both presented in each trial. Moreover, it shows that it is sufficient to perform
a 2AFC instead of the more time-consuming discrimination task, if one wants to determine
the overall performance of the subject. A discrimination task is more time-consuming and
more difficult, because it demands a bunch of trials to be performed for several values of
the internal threshold k which is not directly accessible, in order to get the ROC curve. On
the other hand, a 2AFC is approximately as time-consuming as the discrimination task for
one fixed threshold value k. Thus, a 2AFC is much more efficient than a discrimination
task.
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