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The compression scheme raised by Schumacher [1, 2] is
a quantized version of Shannon’s source coding theorem
[3]. Say, we have an alphabet A = {a1, . . . , aK} of K
letters. Alice composes a “quantum message” by assign-
ing to each classical letter ak a quantum state |ak〉 taken
from some Hilbert state H,

ak 7→ |ak〉. (1)

Doing so, the alphabet A is mapped to a quantum alpha-
bet QA consisting of K quantum letters |ak〉,

QA = {|a1〉, . . . , |aK〉}. (2)

The span of the quantum alphabet QA is the letter space

HA := SpanQA, (3)

which is a subspace of H. Alice composes a random mes-
sage by choosing the quantum letter |ak〉 with a priori
probability pk = p(ak). We may associate a letter matrix
ρ̂ corresponding to the ensemble of letter states,

ρ̂ =
∑
x∈A

p(x) |x〉〈x| =
K∑

k=1

pk |ak〉〈ak|. (4)

If Alice composes a random message x ≡ x1 · · ·xN of
length N from the message set M ≡ A × · · · × A by
choosing N letters independently from the same letter
ensemble. The resulting quantum message has the form

|x〉 ≡ |x1〉 ⊗ · · · ⊗ |xN 〉, (5)

where each letter |xn〉 is an element of QA and the entire
message is a vector from the Hilbert space

HM := H⊗N
A ≡ HA ⊗ · · · ⊗ HA. (6)

The message |x〉 appears with probability p(x) =
p(x1) · · · p(xN ), such that the total message ensemble can
be represented by the message matrix

ρ̂ = ρ̂⊗N =
∑

x∈M
p(x) |x〉〈x|. (7)

Before sending her block message to Bob, Alice has to
convert the message into a sequence of qubits, because
the channel to Bob only accepts qubits. Therefore, she
wants to build an encoder Ĉ that unitarily maps the
source space HM to a code space HC of qubits,

Ĉ : HM → HC . (8)

∗Electronic address: bostroem@qipc.org

In order for Ĉ to be unitary, the dimension of HC must
be equal to the dimension of the source space HM . The
dimension of the alphabet space is at most K, but the
quantum letters |ak〉 do not have to be mututally orthogo-
nal, yet they do not even have to be linearly independent,
so the dimension of HA can in fact be smaller than the
number of alphabet letters, which gives

log(dimHM ) = N log(dimHA) ≤ N log K, (9)

where logs are binary, here and in the following. A mes-
sage |x〉 is encoded into the binary message |c(x)〉 by
applying the encoder Ĉ,

|c(x)〉 := Ĉ|x〉. (10)

Note that while |x〉 is by construction a product state,
the code state |c(x)〉 can be highly entangled. Let the
alphabet space HA have dimension L, then in order to
encode every message in HM we need a qubit space of
dimension

dimHC = dimHM = LN . (11)

where we assume that L and N are chosen such that
the above number is a power of two. In other words, we
need N log L qubits to encode each message in HM with
perfect fidelity. The decoding procedure is represented
by the inverse operator D̂ : HC → HM ,

D̂ := Ĉ†. (12)

Since the use of a quantum channel is very expensive,
we want to save qubits for the transmission. Let us look
for an encoder Ĉ that is restricted to a proper subspace
Λ ⊂ HM with a dimension significantly smaller than LN ,
such that we still achieve asymptotically faithful decod-
ing. First, we perform a diagonalization of the letter
matrix, resulting in

ρ̂ =
L∑

l=1

ql |λl〉〈λl|. (13)

The number L of ρ̂-eigenstates coincides with the dimen-
sion of the alphabet subspace HA. We have

ρ̂ log ρ̂ =
L∑

l=1

ql log ql |λl〉〈λl|, (14)

such that

Tr{ρ̂ log ρ̂} =
L∑

l=1

ql log ql = H(Y ), (15)
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where Y denotes the ensemble of ρ̂-eigenstates. Defining
the von-Neumann entropy of ρ̂ as

S(ρ̂) := Tr{ρ̂ log ρ̂}, (16)

we see that the von-Neumann entropy of ρ̂ equals the
Shannon entropy of the ensemble of ρ̂-eigenstates,

S(ρ̂) = H(Y ). (17)

One can show that the von-Neumann entropy is bounded
from above by the Shannon entropy of the letter ensemble
X,

S(ρ̂) ≤ H(X), (18)

where equality holds in the case of mutual orthogonal
letter states.

Quantum mechanics tells us that the scenario where
Alice sends the ensemble Y cannot by any experiment be
distinguished from the actual scenario where Alice sends
the ensemble X. However, sending the ensemble Y cor-
responds to a classical situation. Consider the sequence
|y〉 ≡ |y1 · · · yN 〉 of basis states |yn〉 ∈ BA, which ap-
pear with probability q(y) = q(y1) · · · q(yN ). Just like in
Shannon’s noiseless coding theorem we introduce a typi-
cal subset T of messages y appearing with probability

2−N(S+δ) ≤ q(y) ≤ 2−N(S−δ), (19)

where we have used the fact that H(Y ) = S(ρ̂) ≡ S.
Then we define the typical subspace Λ ⊂ HA as the space
spanned by the typical messages,

Λ := Span{|y〉 | y ∈ T}. (20)

Exploiting Shannon’s theorem we know that for any fixed
ε, δ > 0 there is a big enough N such that

PΛ ≥ 1− ε, (21)

where PΛ is the total probability of all members of T ,

PΛ =
∑
y∈T

q(y). (22)

Since the typical subspace Λ is spanned by the typical
messages |y〉 where y ∈ T , the dimension of Λ is given
by the size of T , so Shannon’s theorem implies that

(1− ε)2N(S−δ) ≤ dim Λ ≤ 2N(S+δ). (23)

In the asymptotic limit N → ∞, the dimension of the
subspace approaches

dim Λ → 2NS . (24)

Because we have

S(ρ̂) =
L∑

l=1

ql log ql ≤ log L, (25)

the dimension of Λ is smaller than or equal to the dimen-
sion of the space of all messages,

dim Λ = 2NS(ρ̂) ≤ 2N log L = dimHM . (26)

In practice, except for the case of uniformly distributed
letters, the typical subspace will have a dramatically
smaller dimension (for large N). Hence we can save re-
sources by encoding only the component of |x〉 that lies
in the typical subspace Λ. To this aim we need the pro-
jector onto the typical subspace, which is given by

Π̂Λ =
∑
y∈T

|y〉〈y|. (27)

Now we restrict the encoder to the typical subspace,
Ĉ : Λ → HC , where it shall be a unitary operator. Schu-
macher compression goes as follows. First, Alice projects
her source message |x〉 onto the typical subspace Λ. With
probability

PΛ(x) := 〈x|Π̂Λ|x〉 = Tr{|x〉〈x|Π̂Λ}. (28)

such projection will be successful and results in the state

|φ(x)〉 :=
1√

PΛ(x)
Π̂Λ|x〉, (29)

The average probability of a successful projection thus
reads

〈PΛ(X)〉 =
∑

x∈M
p(x)PΛ(x) (30)

=
∑

x∈M
p(x)Tr{|x〉〈x|Π̂Λ} (31)

= Tr
{ ∑

x∈M
p(x)|x〉〈x|Π̂Λ

}
(32)

= Tr{ρ̂ Π̂Λ}, (33)

that is,

〈PΛ(X)〉 = Tr{ρ̂Π̂Λ}. (34)

Let us proceed,

Tr{ρ̂Π̂Λ} =
∑
y∈T

〈y|ρ̂|y〉 (35)

=
∑
y∈T

q(y) ≡ PΛ ≥ 1− ε, (36)

where in the last step we used Shannon’s theorem. We
arrive at

〈PΛ(X)〉 = PΛ ≥ 1− ε, (37)

hence the projection will be 100% successful in the
asymptotic limit of infinitely long messages. After pro-
jection, Alice can encode the resulting state |φ(x)〉 by Ĉ
and send it to Bob, who then applies the inverse opera-
tion Ĉ† to obtain the state |φ(x)〉. If the overlap of |φ(x)〉
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with the original message is big enough, it was an approx-
imately faithful transmission. If the projection was not
successful, Alice prepares some garbage state |φ0〉 ∈ Λ,
encodes it by Ĉ and sends it to Bob. In this case, the
overlap with the orininal message |x〉 is hopefully very
small. To put this more precisely, we describe the statis-
tical ensemble of successful and unsuccessful projections
by a density matrix. The probability that the projection
is not successful reads

1− PΛ(x) = 〈x|(1− Π̂Λ)|x〉. (38)

So after the projection procedure the message will be in
the mixed state

ρ̂x = PΛ(x)|φ(x)〉〈φ(x)|+ (1− PΛ(x))|φ0〉φ0| (39)

= Π̂Λ|x〉〈x|Π̂Λ + (1− PΛ(x))|φ0〉〈φ0|. (40)

The subsequently performed encoding procedure by Ĉ
maps the state ρ̂x to the qubit state Ĉρ̂xĈ†, which is
then send to Bob through the quantum channel. Af-
ter receiving the code message, Bob applies the decoder
D̂ = Ĉ† to it and since Ĉ is unitary, he recovers the
state ρ̂x. Originally, the message was given by the pure
state |x〉〈x|. The fidelity between original and decoded
message is given by

F (x) = 〈x|ρ̂x|x〉 (41)

= 〈x|Π̂Λ|x〉〈x|Π̂Λ|x〉+ rx (42)
= P 2

Λ(x) + rx (43)
≥ P 2

Λ ≥ 2 PΛ(x)− 1, (44)

where we used

rx := 〈x|
{
(1− PΛ(x))|φ0〉〈φ0|

}
|x〉 ≥ 0 (45)

together with the inequality x2 ≥ 2x − 1, which holds
for all real numbers x. So the average fidelity for the
ensemble x of source messages reads

F =
∑

x∈M
p(x) F (x) (46)

≥
∑

x∈M
p(x)

(
2 PΛ(x)− 1

)
(47)

= 2Tr{ρ̂Π̂Λ} − 1 ≥ 1− 2ε, (48)

where we used (36). We arrive at the important conclu-
sion: The average fidelity of the decoded states with the
original messages tends to unity in the limit of infinitely
long messages. States that do not survive the projection
will be all encoded by the same junk state, which thus
cannot be faithfully decoded to give the original message.
Happily, the probability of such erroneous decoding van-
ishes in the limit of infinitely long messages. Since the
dimension of the typical space approaches d → 2NS , we
need IN = NS(ρ̂) qubits to encode each typical message,
hence per source letter we need

I = S(ρ̂) (49)

qubits in the limit of infinitely long messages, which rep-
resents a significant compression in most practical cases.
Now let us investigate if we can achieve a compression
below S(ρ) qubits. Just like in the classical case, we fix
some ε′ > 0 and project the source message on a “sub-
typical subspace” Λ′ ⊂ Λ whose dimension is

dim Λ′ ≤ (1− ε)2N(S−δ−ε′) < 2N(H−δ−ε′). (50)

Let the space Λ′ be spanned by the messages in a “sub-
typical set” T ′ ⊂ T ,

Λ′ := Span{|y〉 | y ∈ T ′}, (51)

so the dimension of Λ′ equals the size of T ′,

dim Λ′ = |T ′|. (52)

The probability that a given message |x〉 is successfully
projected onto Λ′ reads

PΛ′(x) = 〈x|Π̂Λ′ |x〉 (53)

= Tr{|x〉〈x|Π̂Λ′}, (54)

and the projected state is then given by

|φ′(x)〉 :=
1√

PΛ′(x)
Π̂Λ′ |x〉. (55)

The average probability that a message is successfully
projected onto Λ′ yields

PΛ′ =
∑

x∈M
p(x)PΛ′(x) (56)

=
∑

x∈M
p(x) Tr{|x〉〈x|Π̂Λ′} (57)

= Tr{ρ̂Π̂Λ′} =
∑
y∈T ′

〈y|ρ̂|y〉 (58)

=
∑
y∈T ′

q(y) (59)

≤ qmax|T ′| ≤ 2−N(S−δ)2N(S−δ−ε′) (60)

= 2−Nε′ , (61)

which vanishes for N → 0. So already the projection
will fail in the limit of long messages. This implies that
the state ρ̂x after the projection will contain a vanishing
component of the original message,

ρ̂x = PΛ′(x)|φ(x)〉〈φ(x)|+ (1− PΛ′(x))|φ0〉φ0|(62)

= Π̂Λ′ |x〉〈x|Π̂Λ′ + (1− PΛ′(x))|φ0〉〈φ0|. (63)

The fidelity of ρ̂x with |x〉 will also vanish,

F (x) = 〈x|ρ̂x|x〉 (64)
= P 2

Λ′(x) + rx (65)
≤ PΛ′(x) + rx (66)

= Tr{|x〉〈x|Π̂Λ′}+ rx, (67)
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where we used PΛ′(x) ≤ 1 and defined

rx := 〈x|
{
(1− PΛ′(x))|φ0〉〈φ0|

}
|x〉 ≥ 0 (68)

The average fidelity becomes

F =
∑

x∈M
p(x) F (x) (69)

≤ Tr{ρ̂Π̂Λ′}+
∑

x∈M
p(x) rx (70)

= PΛ′ + r (71)

≤ 2−Nε′ + r, (72)

where

r :=
∑

x∈M
p(x) rx. (73)

In the limit N →∞, the average fidelity will approach

F → r, (74)

which is just the average overlap of the source message
ensemble with the garbage state |φ0〉. So even if the cod-
ing fails, there is still a chance to accidentally decode
the correct message. However, such chance has nothing
to do with faithful decoding, because the garbage state
does not contain any information about the original mes-
sage. Bob could simply guess the correct message with
non-zero probability. We can get rid of r by choosing
|φ0〉 orthogonal to all source messages.

Concluding, we arrive at the quantum analog of Shan-
non’s source coding theorem: A letter ensemble ρ̂ can be
compressed to S(ρ) qubits in the limit of infinitely long
messages. Compressing to fewer than S(ρ) qubits results
in a loss of all information in the limit of infinitely long
messages. A good review on the issue can also be found
in [4, 5].
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