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Random Variables

1 Basics

A random variable is an abstract conception. Let us endow random variables with a hat, as
in x̂, to distinguish them from ordinary variables. A continuous real-valued random variable
x̂ takes real values x ∈ R which are called the realizations of x̂. The random variable x̂
is then completely defined by a nonnegative probability distribution p : R → [0,∞) with∫

dx p(x) = 1 (completeness). The probability distribution is also called the probability
density function (pdf). The subset X ⊂ R where p(x) > 0 is the set of possible realizations
of x̂.

The probability distribution determines the probability of events. For continuous random
variables, an event is a subset X ⊂ R so that the probability that x̂ takes a value in the set
X is given by

P(X) :=
∫

X
dx p(x). (1)

We mostly refer to an event in a more intuitive way. For example, we refer to an event
X ⊂ R as “x̂ ∈ X” in order to make explicit that we consider the event that the random
variable x̂ takes a value in X. The probability that x̂ takes a value below x is given by the
cumulative probability distribution (cdf)

P (x) := P(x̂ ≤ x), (2)

which is equal to P((−∞, x]) or, more explicitely,

P (x) =
∫ x

−∞
dx′ p(x′), (3)

which implies
P ′(x) = p(x). (4)

The most important property of a random variable x̂ is its expectation value, also called the
mean or the first moment,

µ(x̂) :=
∫

dx p(x) x. (5)

Because the mean is of such a central meaning in stochastics, a more convenient notation
using brackets is used, namely

〈x̂〉 := µ(x̂). (6)

Any function f(x̂) of a random variable x̂ is also a random variable and its expectation value
reads

〈f(x̂)〉 =
∫

dx p(x)f(x). (7)
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For two real numbers α, β we have

〈αx̂ + β〉 = α〈x̂〉+ β. (8)

The second most important property of a random variable x̂ is the variance

σ2(x̂) := 〈(x̂− 〈x̂〉)2〉 = 〈x̂2〉 − 〈x̂〉2, (9)

which is identical to the second central moment, where the n-th moment of x̂ about a value
c is defined by

µn,c(x̂) := 〈(x̂− c)n〉. (10)

The moments about the mean are called the central moments. The square root of the
variance is called the standard deviation,

σ(x̂) :=
√

σ2(x̂). (11)

For two real numbers α, β we have

σ2(αx̂ + β) = α2σ2(x̂). (12)

A discrete real-valued random variable x̂ is defined by a countable set X = {xi} of realizations
and a probability distribution pi = p(xi), so that the mean of any function f(x̂) is given
by

〈f(x̂)〉 :=
∑

i

pi f(xi), (13)

and the probability to find x̂ realized in the set X ⊂ X is given by

P{x̂ ∈ X} :=
∑

xi∈X

pi. (14)

Particularly, the probability that x̂ is realized as xi reads

P{x̂ = xi} = p(xi) = pi. (15)

A discrete random variable is equivalent to a continuous random variable having a δ-peaked
probability distribution

p(x) =
∑

i

δ(x− xi)pi. (16)

The use of singular distributions like the δ-function requires special treatment and care.

2 Characteristic function

The characteristic function χ of a continuous random variable x̂ is the Fourier transform of
its probability function,

χ(k) := 〈eikx̂〉 =
∫

dx p(x) eikx. (17)
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The characteristic function can be used to easily get the moments of a probability distribu-
tion. With χ(n)(k) ≡ ∂n

∂kn χ(k) being the n-th derivative of the characteristic function, we
have

〈x̂n〉 =
1
in

χ(n)(0). (18)

3 Gaussian variables

A Gaussian random variable x̂ has a probability distribution p(x) = G(x|µ, σ) with only two
parameters, the mean µ and the variance σ, and it takes the form

G(x|µ, σ) :=
1√
2π

e−
(x−µ)2

2σ2 . (19)

The half-width η is the distance between those two points on the x-axis where the Gaussian
function equals 1/2, whereas the Gauss-width γ is the distance between those two points
on the x-axis where the Gaussian function equals 1/e. Both values are connected to the
standard deviation σ via

η = (2
√

2 ln 2) · σ ≈ 2.3548 · σ (20)

γ = (2
√

2) · σ ≈ 2.8284 · σ. (21)

If x̂ is Gaussian, then the random variable

ẑ =
x̂− µ

σ
(22)

is normally distributed, that is, it has a Gaussian distribution p(z) = G(z|0, 1) being centered
at µz = 0 and having a standard deviation of σz = 1,

G(z) := G(z|0, 1) =
1√
2π

e−
z2

2 . (23)

Hence, ẑ indicates the distance from the mean in standard deviations, often referred to as
the z-score. The transformation between x̂ and ẑ are accomplished by

ẑ =
x̂− µ

σ
(24)

and x̂ = σẑ + µ. (25)

The Gaussian cumulative distribution function (cdf) is given by

Φ(x|µ, σ) :=
∫ x

−∞
dx′G(x′|µ, σ), (26)

and the standard normal cdf by

Φ(x) := Φ(x|0, 1). (27)
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Between the Gaussian cdf and the normal cdf there is the useful relationship

Φ(x|µ, σ) = Φ
(

x− µ

σ

)
. (28)

The error function erf(x) is defined as

erf(x) := 2Φ(
√

2x)− 1, (29)

or explicitely

erf(x) =
2√
π

∫ x

0
dx′ e−x′2 , (30)

so that

Φ(x) =
1
2

(
1 + erf

(
x√
2

))
. (31)

The inverse Gaussian cdf is called the Quantile function,

Q(p) := Φ−1(p), (32)

where the value q = Q(p) is called the p-quantile, and it represents a threshold for x̂ so that
x̂ falls below q with probability p ∈ [0, 1]. We have

Q(p) =
√

2 · erf−1(2p− 1). (33)

4 Entropy and information

The concept of information is subtle and there are many equivalent approaches which not
all appear equivalent at first (and maybe second) sight. One should always remember that
information does not exist per se but is always information about something. If someone says
“The amount of information encoded in this spike train” without indicating what this piece of
information could possibly tell us, he is simply talking nonsense. A stream of bits, symbols,
amino acids or action potentials does not contain any information in itself. Only if the stream
reduces our ignorance about a certain quality, we may say that it conveys information about
this quality. Now, there is a well-known measure of ignorance (or uncertainty) about a
particular random variable x̂, the famous Shannon entropy. In the continuous case, the
Shannon entropy is defined as

H(x̂) := −
∫

dx p(x) log p(x), (34)

and has values on the entire real line,

H(x̂) ∈ R. (35)
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In the case of a discrete random variable, the Shannon entropy is defined as

H(x̂) := −
∑

i

pi log pi, (36)

and is always bigger or equal to zero,

H(x̂) ≥ 0, (37)

with H = 0 exactly if pj = 1 for a certain j and pi = 0 for i 6= j. Thus, we can interpret
the situation H = 0 as if our ignorance with respect to the value of x̂ is zero because we
know that with certainty x̂ is realized as xj .

Unfortunately, such straightforward interpretation is not possible for the continuous case,
because the Shannon entropy of a continuous random variable can also be negative. In the
extreme case where we know with certainty that x̂ is realized as some real number x0, then
the corresponding probability distribution reads p(x) = δ(x− x0). The Shannon entropy of
such a distribution equals minus infinity,

H(x̂) = −
∫

dx p(x) log p(x) (38)

= −
∫

dx δ(x− x0) log δ(x− x0) (39)

= − log δ(0) = −∞. (40)

A possible approach to the concept of information content is to consider the difference in
entropy before and after a piece of information about x̂ has been received. Such “piece
of information” can be a measurement, or some additional insights that have not been
recognized before, or somebody telling us something about x̂, or whatever. Let us call this
piece of information simply a message. Before receipt of the message, the unknown value is
described by the random variable x̂, after the receipt, the unknown value is described by the
random variable x̂′. The probability distribution changes from p(x) to p′(x) (where the prime
does not indicate differentiation!). The differential entropy between x̂ and x̂′ reads

∆H = H(x̂)−H(x̂′). (41)

If ∆H > 0 then we interpret this as our knowledge about the unknown value having been
increased by the piece of information, in other words, we have gained information. Similarly,
if ∆H < 0 then we have lost information. This interpretation is independent of H being
positive or negative. Furthermore, the interpretation also goes for discrete random variables.
Hence, the differential entropy is a much better measure for the amount of information than
the Shannon entropy alone. It does not refer to the random variable x̂ but rather to a
message about x̂. The information content of the message with respect to the unknown
value x̂ equals the differential entropy ∆H.

It should be noted that there is a useful and meaningful measure of the information content
of a message without reference to an external random variable. It is the maximal amount of
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information that a message may convey. This maximal amount is connected to the number
of possible states the message can be in. Let M = {mi} be the finite set of possible message
states, then

I = log |M | (42)

is the maximal amount of information the message can carry. This concept of information
content is realized as the file size on a computer. A record of N zeroes and ones can be in
one out of 2N possible states, thus, the file size of the record is I = log(2N ) = N bits.

If the message is in a continuum of possible states, then one may replace the size with the
volume of the set of all possible realizations of x̂,

I = log

 ∫
p(x)>0

dx

 . (43)

In our example, a spike train does not contain information per se, it rather conveys infor-
mation about something else, for example an external stimulus or an internal brain state.
Moreover, since spike trains are represented by continuous random variables (because the
instantaneous spike rates take on a continuum of possible values), the Shannon entropy of
the spike train is no meaningful measure for the information content anyway. Also, since
the set of possible spike trains is infinite, there is not even a meaningful amount of maximal
information a spike train may convey. Transforming the continuous variable into a discrete
one by particular “time binning” of the spike train is strongly dependent on the binning and
therefore highly artificial. Also, it neglects information possibly conveyed in the interspike
interval and in the graded potential.

Examples Consider the random variable x̂ with

p(x) =

{
1
2 −a ≤ x ≤ a

0 else
(44)

where a is some positive real number. The entropy reads

H(x̂) = −
∫

dx p(x) log p(x) (45)

= −
∫ a

−a
dx

1
2

log
1
2

=
1
2

∫ a

−a
dx (46)

=
1
2
[
x
]a

−a
=

1
2
{a + a} (47)

= a. (48)

Thus, the entropy grows with the length of the interval where x̂ is realized. There is a
straightforward interpretation: The uncertainty about the value of x̂ grows when the range
of possible values becomes larger.
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***

Intuitively, we would expect a message about x̂ to always increase our knowledge. However,
there can be also negative values of ∆H which would mean that the message contains
“negative information” about x̂, although we know more about x̂ than before. Impossible?
Consider the following example: “The key is either in my pocket or somewhere in the room.”
Given that there are, say, 128 places in the room where the key can be, the probability
distribution reads

p1 = 0.5 (49)

p2 = . . . = p129 =
0.5
128

=
1

256
, (50)

whose entropy is

H = −1
2

log
1
2
−

128∑
i=1

1
256

log
1

256
(51)

=
1
2

+
1
2

log(256) = 4.5 (52)

bits. Now I check my pocket to see that the key is not there. This piece of information
updates my probability distribution to

p′1 = 0 (53)

p′2 = . . . = p′129 =
1

128
, (54)

whose entropy reads

H ′ =
128∑
i=1

1
128

log
1

128
= log(128) = 7 (55)

bits. Therefore, the message “the key is not in my pocket” contained an amount of

∆H = H −H ′ = −2.5 (56)

bits, which is negative! It definitely was a bad message. My knowledge about the true
location of the key has become poorer. Before, there was a 50% chance that the key is in
my pocket, which was a quite comfortable situation. Now, I lost this possibility and have to
look in roughly half of the 128 places in the room before I find the key.

***

How much information do I obtain when I learn the exact value of a continuous random
variable x̂? Initially, my amount of ignorance equals the usual Shannon entropy

H = −
∫

dx p(x) log p(x). (57)
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After getting to know the exact value of x̂, say x̂ = x0, the probability distribution is updated
to

p′(x) = δ(x− x0), (58)

whose Shannon entropy equals minus infinity,

H ′ = −
∫

dx δ(x− x0) log δ(x− x0) = − log δ(0) = −∞. (59)

Thus, the differential entropy, whatever my knowledge about the initial random variable x̂,
reads

∆H = H −H ′ = H +∞ = ∞. (60)

Consequently, getting to know the exact value of a random variable requires an infinite
amount of information to be transmitted! This is insofar plausible as a real number has in-
finitely many digits. Knowing the exact value of x̂ means knowing all of these infinitely many
digits, which requires an infinite amount of information to be transmitted and stored.

But then, how come I ever get to know the exact value of a continuous random variable?
Obviously never, because my brain is not infinitely large. But are there really real numbers
in the real world out there at all? Does any of the physical systems out there really have
an exact state, which is only one out of a continuum of possible states? And if so, then
I as well as any other finite information-processing system will never, not even in principle,
have the ability to get to know this exact physical state. And do we have the chance at
least? The probability to find a continuous random variable having the exact value, say, x0

is zero,

P{x̂ = x0} = lim
ε→0

∫ x0+ε

x0−ε
dx p(x) = 0, (61)

for any probability distribution that is non-singular at x0. Thus it will never happen that the
random variable takes the exact value x0. I can repeat this argument for arbitrary x0, so I
have just shown that x̂ cannot take any value at all, right?

Altogether, continuous random variables are pretty much different from ordinary numbers
and have to be handled with care.

5 Functions of random variables

5.1 Probability distribution

The function of a random variable is also a random variable. Consider the continuous real-
valued random variable x̂ and some function f : R→ R then the random variable

ŷ = f(x̂) (62)
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has the probability distribution

q(y) =
∫

dx δ(y − f(x))p(x). (63)

This is reasonable because then we have for any other function g : R→ R

〈g(ŷ)〉 =
∫

dy q(y)g(y) (64)

=
∫

dx dy δ(y − f(x))p(x)g(y) (65)

=
∫

dx p(x)g(f(x)) (66)

= 〈g(f(x̂))〉, (67)

as desired.

Examples Consider the random variable ŷ = x̂2 where x̂ has the probability distribu-
tion (44). Then ŷ is distributed by

q(y) =
∫

dx δ(y − f(x))p(x) (68)

=
∫ a

−a
dx

1
2
δ(y − x2) (69)

=
∫ a

−a
dx

1
|2x|

{δ(x−√y) + δ(x +
√

y)}p(x) (70)

=

{
1

2
√

y{p(
√

y) + p(−√y)} ; 0 ≤ y ≤ a2

0 ; else
(71)

=

{
1

2
√

y ; 0 ≤ y ≤ a2

0 ; else,
(72)

where we have used the relation

δ(f(x)) =
1

|f ′(x)|
∑

f(xi)=0

δ(x− xi). (73)

The mean of ŷ = x̂2 yields

〈ŷ〉 =
∫

dy q(y)y =
∫ a2

0
dy

y

2
√

y
=

∫ a2

0
dy

1
2
√

y (74)

=
1
2
[2
3
y

3
2
]a2

0
=

1
3
a3. (75)
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5.2 Entropy

Let us calculate the entropy H(ŷ) for ŷ = f(x̂),

H(ŷ) = −
∫

dy q(y) log q(y) (76)

= −
∫

dy dx p(x)δ(y − f(x)) log
[∫

dx′ p(x′)δ(y − f(x′))
]

(77)

= −
∫

dx p(x) log
[∫

dx′ p(x′)δ(f(x)− f(x′))
]

. (78)

In order for this expression to exist, we have to assume that f ′(x) 6= 0 on the set of
realizations of x̂, i.e. where p(x) > 0, then it follows that f can be inverted on that domain,
and then the condition f(x′) = f(x) is equivalent to x′ = x and hence

H(ŷ) = −
∫

dx p(x) log
p(x)
|f ′(x)|

(79)

= −
∫

dx p(x) log p(x) +
∫

dx p(x) log |f ′(x)|. (80)

Recalling that ŷ = f(x̂), and that the first term above equals the Shannon entropy of x̂, and
that the second term has the form of an expectation value of the random variable |f ′(x̂)|,
we arrive at the compact formula

H(f(x̂)) = H(x̂) + 〈log |f ′(x̂)|〉. (81)

Examples Consider the trivial function f(x̂) = x̂, then we expect that the random variable
ŷ = x̂ has the same entropy as x̂. Indeed, using (81) we find

H(ŷ) = H(x̂) + 〈log |f ′(x̂)|〉 (82)

= H(x̂) + 〈log 1〉 = H(x̂). (83)

Next, consider the quadratic function f(x̂) = x̂2, with x̂ being defined by the probability
distribution (44). Using (81), the entropy of ŷ = x̂2 yields

H(x̂2) = H(x̂) + 〈log |2x̂|〉 (84)

= a +
∫ a

−a
dx

1
2

log |2x| (85)

= a + 2
∫ a

0
dx log x (86)

= a + 2 ·
[
x(log x− 1)

]a

0
(87)

= a + 2a(log a− 1). (88)

Interestingly, if a < 2 then the entropy of x̂2 is smaller than the entropy of x̂ because
then the factor (log a − 1) above is negative. Straightforward interpretation: The interval
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[−a, a] of possible values for x̂ is compressed to the interval [0, a2] of possible values for
x̂2, hence, the uncertainty about the value of x̂2 is smaller than the uncertainty about the
value of x̂. Similarly, for a > 2 the interval is extended to [0, a2] so that the uncertainty is
increased.

6 Correlation

In order to understand how information is conveyed by one variable about another variable,
we need the notion of correlation.

A pair of continuous real-valued random variables x̂, ŷ take values in R2 = R ×R. Since
the two random variables are not necessarily independent from each other, the realization
of both variables is conceived as a joint event whose probability is determined by the joint
probability distribution p(x, y). The probability to find x̂ in X and ŷ in Y , where X, Y ⊂ R,
reads

P{(x ∈ X) ∧ (y ∈ Y )} =
∫

X×Y
dx dy p(x, y). (89)

Note that P{(x ∈ X) ∧ (y ∈ Y )} ≡ P{(x, y) ∈ X × Y }. The expectation value of any
function of x̂, ŷ is given by

〈f(x̂, ŷ)〉 :=
∫

dx dy p(x, y)f(x, y). (90)

The two random variables x̂, ŷ are mutually independent exactly if the joint probability
distribution factorizes,

p(x, y) = p(x)q(y), (91)

where

p(x) :=
∫

dy p(x, y), q(y) :=
∫

dx p(x, y) (92)

are the marginal probabilities.

If ŷ is a function of x̂, thus ŷ = f(x̂) then the joint probability distribution reads

p(x, y) = p(x)δ(y − f(x)), (93)

which is demonstrated by showing that∫
dy p(x, y) =

∫
dy p(x)δ(y − f(x)) = p(x) (94)

and, by considering (63),∫
dx p(x, y) =

∫
dx p(x)δ(y − f(x)) = q(y), (95)
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as desired.

It can be shown that the mean and the variance of independent random variables are addi-
tive,

〈x̂ + ŷ〉 = 〈x̂〉+ 〈ŷ〉 (96)

σ2(x̂ + ŷ) = σ2(x̂) + σ2(ŷ). (97)

6.1 Mutual information

Two random variables that are not mutually independent are correlated. The degree of
correlation can measured in different ways. The best measure for correlation is the mutual
information

I(x̂, ŷ) :=
∫

dx dy p(x, y) log
p(x, y)

p(x)q(y)
, (98)

where it is common to take the binary logarithm, so that the resulting unit is the bit. (A bit
is the binary logarithm of a dimensionless number.)

We can think of the mutual information as the amount of information I learn about one
variable when getting to know the other variable. The mutual information is the best measure
of correlation between x̂ and ŷ, because if and only if I(x̂, ŷ) = 0 then the two random
variables are mutually independent. Moreover, we have

I(x̂, ŷ) ≥ 0 (positivity) (99)

I(x̂, ŷ) = I(ŷ, x̂) (symmetry). (100)

In the discrete case, the maximal value of the mutual information is the minimum of the two
individual entropies,

I(x̂, ŷ) ≤ min
{
(H(x̂),H(ŷ)

}
. (101)

In the continuous case there is no such upper bound, because the information needed to
learn the exact value of a continuous variable is infinite. Hence, if two variables fully depend
on each other (one is completely redundant with the other), their mutual information is
infinite.

Other equivalent expressions for the mutual information are

I(x̂, ŷ) = H(x̂) + H(ŷ)−H(x̂, ŷ) (102)

I(x̂, ŷ) = H(x̂)−H(x̂|ŷ) (103)

I(x̂, ŷ) = H(ŷ)−H(ŷ|x̂), (104)

where

H(x̂|ŷ) := −
∫

dx dy p(x, y) log p(x|y) (105)

12



is the conditional entropy, and

H(x̂, ŷ) := −
∫

dx dy p(x, y) log p(x, y) (106)

is the joint entropy.

6.2 Pearson correlation coefficient

Another, often used, measure of correlation is the Pearson correlation coefficient,

Corr(x̂, ŷ) :=
Cov(x̂, ŷ)
σ(x̂)σ(ŷ)

, (107)

where
Cov(x̂, ŷ) := 〈(x̂− 〈x̂〉)(ŷ − 〈ŷ〉)〉 (108)

is the covariance of x̂ and ŷ. In fact, the Pearson correlation coefficient only measures
the amount of linear correlation between two variables. A positive or negative coefficient
indicates positive or negative linear correlation, respectively. When the two variables are
independent, then the coreelation coefficient is zero. Unfortunately, the converse is not
true.

Examples Consider a continuous random variable x̂ and a fully dependent random variable
ŷ = f(x̂). Using (93), the joint entropy reads

H(x̂, ŷ) = −
∫

dx dy p(x, y) log p(x, y) (109)

= −
∫

dx dy p(x)δ(y − f(x)) log
[
p(x)δ(y − f(x))

]
(110)

= −
∫

dx p(x) log
(
p(x)δ(0)

)
(111)

= −∞. (112)

Thus for any continuous random variable x̂

H(x̂, f(x̂)) = −∞. (113)

***

Consider the random variables x̂ given by (44) and the random variable ŷ = x̂2. The joint
probability according to (93) reads

p(x, y) = p(x)δ(y − f(x)) (114)

=

{
1
2δ(y − x2) ;−a ≤ x ≤ a

0 ; else.
(115)

13



Therefore, the covariance of x̂ and ŷ yields

Cov(x̂, ŷ) =
∫

dx dy p(x, y)(x− 〈x̂〉)(y − 〈ŷ〉)〉 (116)

=
∫

dx dy p(x)δ(y − x2)(x− 0)(y − 1
3
) (117)

=
∫

dx p(x)x(x2 − 1
3
) (118)

=
∫ a

−a
dx

1
2

(
x3 − x

3

)
= 0, (119)

where in the last step we have used that the integration interval is symmetric around zero
and that the integrand is an odd function. Thus, the Pearson correlation coefficient equals
zero for all values of a,

Corr(x̂, ŷ) =
Cov(x̂, ŷ)
σ(x̂)σ(ŷ)

= 0. (120)

The example shows that there are quite simple cases where the Pearson correlation coefficient
completely vanishes although the variables are strongly correlated. In contrast to that, the
mutual information between x̂ and ŷ is infinite because the two variables are continuous and
are completely dependent on each other. The information obtained about one variable when
learning the exact value of the other is infinite, because, as we have shown above, the joint
entropy H(x̂, ŷ) equals minus infinity. Collecting the terms we obtain

I(x̂, f(x̂)) = H(x̂) + H(f(x̂))−H(x̂, f(x̂)) (121)

= 2 ·H(x̂) + 〈log |f ′(x̂)|〉 − (−∞) = ∞. (122)

Concluding, the mutual information between two completely dependent continuous random
numbers is infinite.
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