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Introduction

Quantum information theory is the combination of quantum mechanics and information
theory. The profit is on both sides: quantum mechanics gains valuable aspects con-
cerning the physical interpretation of the theory, and information theory gains enhanced
capabilities of information processing and communication. Classically, it is the logical
yes/no decision, the bit, which forms the elementary unit of information. A sequence of
bits forms the basic object of information theory, the message. A message can be com-
posed and read out by addressing each bit individually. In quantum information theory
the elementary unit of information is the qubit, which represents a linear superposition
of yes and no. A sequence of qubits forms the quantum message and here another
phenomenon shows up: entanglement. A quantum message consisting of entangled
qubits contains “non-local” information, which means that the information cannot be
stored and read out by addressing each qubit individually, but only by performing a joint
operation on all qubits. There is no analogon for this in classical information theory.

The extension of information theory to quantum information theory enables us to search
for new algorithms and communication protocols. Shor’s factoring algorithm [54] shows
that the capabilities of a quantum computer exceed those of a classical computer. The
Shor algorithm represents the only known efficient algorithm for prime number factoriza-
tion. Here, “efficient” means that the time needed for the computation is a polynomial
function of the input length. Any superpolynomial relation between input length and
computation time implies that the algorithm is “inefficient”. The origin for the gap of
efficieny between classical and quantum computers is the fact that it is impossible to
efficiently simulate a quantum computer on a classical computer. This can be illustrated
as follows: The input of a quantum computer is a sequence of qubits, say of length N .
The corresponding Hilbert space is of dimension 2N , where each dimension represents
one degree of freedom. A classical computer has to carry out calculations by address-
ing any of these 2N degrees of freedom. In contrast to that, the quantum computer
performs his algorithms by addressing the N qubits only. In other words, the quantum
processor does not have to “know about linear algebra”: the laws of quantum mechanics
do the job for free. Although the above reasoning might seem convincing, it should only
be understood as an illustration. As a matter of fact, there still exists no rigorous proof
that a quantum computer is really superior to a classical computer. If someone finds
an efficient classical algorithm for prime number factorization (whose impossibility of
existence is yet unproven), then all at once the numerically “hard” problems become
“easy” and the advantage of quantum computers over classical computers completely
melt down. Such a scenario is theoretically possible but in view of decades of unavailing
efforts towards such a classical computational breakthrough it seems rather improbable.
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ii Introduction

If we would be able to build a quantum computer with enough resources, then by
using the Shor algorithm the most used public key cryptosystem, the RSA protocol [48],
would no longer provide security. On one hand quantum information theory dooms
the RSA cryptosystem, on the other hand it promotes a potential successor: the BB84
protocol [5]. This communication protocol can be used to distribute a secret random
key between two parties. The secret key then enables the parties to communicate in a
perfectly secure manner. Using a beam of single polarized photons, a random sequence
of bits can be distilled which is completely unavailable to any external non-authorized
person. In its present stage the protocol is implemented over distances of 100 kilometres
using an optical fibre [31]. A free-space connection has been established up to 144
km [57]. If an earth-based station can be connected through the air with a satellite
system using BB84, then a perfectly secure communication of messages all over the
world becomes possible.

But already the mere existence of the BB84 protocol sheds new light onto a crucial
theoretical problem, namely the so-called “key distribution problem” which is puzzling
the crypto-scientists: Perfectly secure classical communication protocols rely on the
existence of a shared secret key. How can this key itself be established without having
an unauthorized person potentially eavesdropping it? The BB84 protocol offers a method
to distribute a random key between two parties which is secure against eavesdropping.
Based on the fact that any measurement unavoidably disturbs the measured system,
the presence of an external eavesdropper can be revealed, in which case the protocol is
aborted, so the eavesdropper is left with a useless random string. Thus, it seems as if
quantum cryptography would solve the key distribution problem.

However, there is some cheating here. The security of the BB84, as of any other quan-
tum cryptographic scheme, crucially relies on the fact that Alice and Bob exchange
certain control messages over a “public channel” which in fact is nothing but an au-
thenticated channel : Alice and Bob can be sure that the messages they receive really
stem from the other party and not from somebody else. But in order to authenticate
the channel, Alice and Bob are forced to establish a secret connection first! So alto-
gether, quantum cryptography does not really solve the key distribution problem but
rather introduces an effective method to enlarge an initially shared secret key. And here
is where the “quantum advantage” comes in: Unconditionally secure classical schemes
like the one-time-pad [35] need a shared secret key of the same length as the message to
be transmitted. Unconditionally secure quantum schemes like the BB84 need a shared
secret key of a certain fixed length to establish an authenticated “public channel”. Once
the channel is established, and with the help of an additional quantum channel, an un-
limited number of shared secret bits can be established which “enlarges” the initially
shared secret key.

As one can see by these examples, the field of quantum information theory represents
an exciting research field with significant theoretical and practical implications. My
contribution to the field concerns the encoding and transmission of information via a
quantum channel. I have studied the implementation of so-called “variable-length codes”
on quantum systems [10], a topic which is quite new to quantum information theory.
Using variable-length codes it is possible to compress and decompress quantum data
without any loss of information. Such cannot be provided by use of the traditional block
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compression scheme also known as Schumacher compression [49], which is lossless only
in the asymptotic limit of infinitely long messages. Furthermore, I have developed and
investigated a novel quantum cryptosystem – the ping-pong protocol – which enables
the secure direct communication of classical messages from one party to another without
the need to establish a shared secret key [9].

This book is divided into three parts. The first part presents the basic concepts of classi-
cal information theory and shows how they are transferred to the quantum domain. The
second part is concerned with the question how to compress quantum data, especially
if the compression takes place without any loss of information. Methods to implement
variable-length codes on a quantum system are proposed and discussed and the limita-
tions of these codes are investigated. The third part deals with quantum cryptography.
After a brief review of the issue, the ping-pong protocol, which is a secure communi-
cation protocol based on an entangled pair of qubits, is presented and its security and
practicality are discussed.
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Main Results

Lossless quantum data compression

The first main result is the development of a suitable formalism to describe and categorize
variable-length quantum codes, which represent the basis for lossless quantum data
compression [10].

In the classical case, there are two different types of compression codes: Lossy and
lossless codes. Lossy codes (like the JPEG algorithm for images) reach very high com-
pression rates at the cost of losing information. Lossless codes (like the GIF algorithm
for images), reach in most cases high compression rates and preserve the information.
It is clear by a simple counting argument that not all messages can be compressed in a
lossless way. There are always messages (in fact the vast majority) that are expanded
by the algorithm. Luckily, these messages are mostly useless (e.g. images of white
noise) and very unlikely to appear in everyday’s use. In the quantum domain, there is
no much variety of compression codes. The authoritative quantum compression code,
the Schumacher code [49, 34, 24], is modeled along the line of Shannon’s source coding
theorem [52] using a fixed-length block code. However, such code is, by construction,
lossy for a finite number of letters and is very difficult to implement. So the development
of novel quantum compression codes that are effective and easy to implement represents
an important task [13, 51].

As is known from classical information theory, one can only compress data without loss
of information if one maps the source letters to codewords of variable length. Source
letters appearing with high frequency are mapped to shorter codewords than letters of
rare use. In the quantum domain, superpositions of letters are allowed, so one in general
obtains a superposition of codewords of distinct length. Such states show a high degree
of entanglement, not only with respect to the letter values but also with respect to the
number of letters in the message, which is measured by a quantum mechanical length
operator acting on a Fock space. The best known classical example of a lossless code
is the Huffman code [17] which has been transferred to the quantum domain firstly in
[13]. A further development of quantum variable-length codes has been made in [51].

In [10] we have put the formalism of quantum variable-length coding on a generalized
basis and derived some important theorems. In particular, we have shown that it is
impossible to compress an unknown quantum message without loss of information. In-
dependently from us, Masato Koashi and Nobuyuki Imoto came to the same conclusion
in the same year our results have been published [36]. In their publication, the amount
of the loss of information using quantum compression instead of classical compression
is interpreted as the genuinely quantum part being incompressible in the asymptotically

v



vi Main Results

faithful scenario.

In order to avoid loss of information, the sender must have apriori knowledge about the
source message, and then he uses a classical side-channel to store the length information
about the encoded message. As a pleasant side effect, the amount of information
transferred through the quantum channel can occasionally be compressed below the
von-Neumann entropy of the source message ensemble. As could be shown, the sum of
quantum and classical information is bounded from below by the von-Neumann entropy.
This theorem represents a quantum analog of Shannon’s source coding theorem for
lossless codes. An explicit algorithm has been proposed that realizes lossless quantum
data compression for any given source ensemble.

Rudolf Ahlswede and Ning Cai have further refined our analysis by giving a sufficient
and necessary condition for the existence of lossless quantum compression codes using a
classical side-channel for given lists of lengths of codes, and by providing a characteriza-
tion of the optimal compression rate [1]. In [2] the same authors explore several aspects
of lossless quantum compression using a classical side channel, including the case of a
mixed-state source. Important work on the asymptotically lossless compression of quan-
tum messages using variable-length codes has been done by Masahito Hayashi and Keiji
Matsumoto [26, 25]. Using their method of “quantum universal variable-length source
coding”, Alice can compress an unknown quantum message in such a way that both the
average error and the probability that the coding rate is greater than the entropy rate
tend to zero.

Secure direct communication

The second main result concerns the construction and discussion of a novel quantum
cryptographic protocol. This so-called “ping-pong protocol” developed in [P2] uses
entanglement as a resource for secure communication. Similiar to the E91 protocol
proposed by Ekert [20] and simplified by Bennet et al. [7], the protocol is based on
an entangled pair of qubits. In contrast to E91, the entanglement is not destroyed
during the transmission. Instead, one of the photons, the travel qubit, is transmitted
to Alice and the other one, the home qubit, is stored by Bob. Alice encodes one bit
of information by applying one of two unitary transformations to the travel qubit, and
then she sends the qubit back to Bob. By performing a Bell measurement, Bob decodes
the stored information. With a certain control probability, Alice and Bob perform a
synchronized measurement, which reveals the presence of an external eavesdropper with
nonzero probability. It can be proven that the security against arbitrary eavesdropping
attacks is provided for the idealized case of a perfect quantum channel. The scheme
is designed in the spirit of the quantum dense coding scheme raised by Bennett and
Wiesner [6]. In contrast to their conclusion that such protocol can only be used for
key distribution and is thus equivalent to the BB84 scheme, the ping-pong protocol
represents an improvement over BB84 in the following way. First, it is deterministic,
so Alice is really able to send a particular non-random message to Bob. Each letter of
the message corresponds to a quantum state which is prepared by Alice, sent through
the quantum channel and is then decoded by Bob. The protocol is more effective,
because no qubits have to discarded. The protocol is instantaneous, that is, Bob is
able to decode the message while receiving it. This feature distinguishes the ping-
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pong protocol from other deterministic quantum cryptographic protocols [4]. Because
of its deterministic nature, one can use the ping-pong protocol for quasi-secure direct
communication, that is, the message can be sent directly with a considerable degree of
security. For example, the probability to eavesdrop the word “Hello” (40 bits) without
being detected is about 10−7, which is of the same magnitude as the chance to get
killed by a lightning flash. If the protocol is used for the transmission of a random key,
then one obtains perfect security, which means that a key of infinite length can only be
eavesdropped with zero probability. It remains an important issue to proof the security of
the ping-pong protocol also for the case of an imperfect quantum channel. Wojcik [58]
has studied an attack scenario on the ping-pong protocol that exploits channel losses
in order to eavesdrop information without being detected. The author could then show
that a slight modification of the control mechanism closes this security hole. Cai [15]
has pointed out that it is possible to disturb the communication between the two parties
without being detected. He also pointed out, however, that an additional classical
method of message authentification suffices to overcome the problem. The ping-pong
protocol is experimentally realizable with relatively small effort. The collaboration with
an experimentalist group at the University of Potsdam has already started. The aim is
to realize the ping-pong protocol by experiments and to explore the potential of future
commercial applications.
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Chapter 1

Classical Information

1.1 Communication

Communication is the transmission of messages – text, thoughts, ideas, pictures, sounds,
speech, whatever – from one party to another. These parties are usually referred to as
‘Alice’ and ‘Bob’, but they do not need to be human beings. In fact, Alice and Bob
can be any kind of information processing systems, though it does not hurt to imagine
them as human beings. Alice wants to transmit a particular message to Bob. How can
this be accomplished, or better: What do we actually mean by “transmission”? Let us
agree that the transmission is successful if Bob has reproduced the message that Alice
wants to transmit. For example, if the message is a thought in Alice’s mind then the
transmission is successful if eventually Bob has the same thought in his mind. Since
a thought cannot be delivered like a parcel, there must be another way to transmit it.
The crucial trick is to encode the message, i.e. to translate it into a signal . If the signal
is a continuous function of continuous parameters, then we speak of an analog signal .
If the signal is a discrete sequence of finitely many signal elements, then it is a digital
signal . (For example, the tracks on a record represent an analog signal, while the tracks
on a CD represent a digital signal.) Once Alice has encoded her message into a signal
by use of an encoder , this signal can be sent to Bob using a channel . A channel is a
physical system which is able to transport signals of a certain kind. When the signal
has reached Bob’s side then he must decode it by use of a decoder . The decoder takes
the incoming signals and applies the inverse encoding operation, so that he recovers the
source message from the signal. In order for the transmission to work, the encoder and
decoder must be adapted to the channel. The signal can be transmitted by the channel
in space and in time. (For example, a telephone line transmits signals mainly in space,
while a floppy disk transmits them mainly in time.) Each message has been formed into
the channel by modification of the channel’s state, so the in-formation in the channel
is the message. The channel is also called a “carrier of information” or “medium”.
Any physical system can act as a channel and the nature of the channel determines the
nature of the information. In particular, if the channel is a quantum system then the
information that is stored on this medium is quantum information. (Strictly speaking,
every system is a quantum system, though if the carrier system is macroscopic enough
then its quantum nature does not show up, so the information is effectivelly classical.)

3



4 Classical Information

Encoder Decoder1010001101010100111010100101110

Source 
message

Signal

Noise

Recovered 
message

Alice Bob

Figure 1.1: The general model of communication introduced by Shannon. Alice encodes a
source message (here a picture of saturn) into a signal by use of an encoder. Here the channel
is a binary channel, so the signal is a sequence of zeroes and ones. The signal is transmitted
through a channel to Bob. In general the channel is exposed to noise, so the signal is distorted.
Bob receives the signal and recovers the source message by use of a decoder.

If encoding, transmission and decoding succeeds then Alice has communicated a message
to Bob. Though there are some obstacles to a successful communication. First, the
code might be lossy, i.e. distinct source messages are not all mapped to distinct signals,
so the decoding procedure will not always reproduce the correct source message. (By far
most codes are of the lossy type, especially if the channel is a digital one. For example,
it is impossible to map the sound of a violin to a sequence of binary digits without losing
information. It is also clear that language is a quite lossy code for thoughts, as many
misunderstandings among people impressingly show.) Second, there can be noise on the
channel. A noisy channel transforms with a certain probability one signal into another
so that the decoding procedure will fail to reproduce the correct source message. All
real-world channels are noisy, but in order to describe the principle mechanism of the
channel it is convenient to consider the noiseless version. Now this is roughly sketched
the general model of communication as it has been introduced 1948 by Claude Shannon
[52], and it is illustrated in Fig. 1.1.

Let us comprise the main notions in this section:

A channel is a physical system that is used for the transmission of messages
from one party to another. A message is an arbitrary object that can be
encoded into a signal which is then transmitted through the channel. The
transmission is successful if the message is reconstructed on the receiver’s
side of the channel.

In the following we will restrict ourselves to digital channels, i.e. channels that transmit
only digital signals. These are discrete sequences of symbols taken from an alphabet.
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The symbols are also called letters and the sequences are also called messages. In order
to distinguish the message that Alice wants to communicate with the message that is
transmitted through the channel in form of a signal, we call them the source message
and the code message, respectively.

1.2 Codes and messages

Codes are everywhere. There is a code for bank accounts, telephone devices and inhab-
itants of a country, there even is a code for living beings: the genetic code. Writing
is a code for language, which is a code for thoughts, which is a code for imaginations,
considerations, emotions and sensations. The reason why there are so many codes is
that there is no communication without codes. One could go so far as to say that reality
is a product of our communication with nature, and that our description of reality is
merely a description of the codes that we can handle. These codes are determined by our
channels of perception (eyes, ears, etc.) and also by our channels of reflection (neurons,
axions, etc.).
In the context of digital commmunication, a code maps source messages of any kind
to messages consisting of a discrete sequence of symbols taken from a finite alphabet.
The source message can be a text, a picture, a thought, a sound or whatever, and it is
chosen by the sender from a message set M. A (classical digital) message is an ordered
sequence x = x1x2x3 · · · of symbols xn taking from an alphabet A = {a1, . . . , aK} of
finite size |A| = d. A finite message of length N is denoted by x = xN and the set of
all messages of length N is denoted by AN . The empty message is denoted by x0 = �
and the corresponding set by A0 = {�}. The set of all finite messages that can be
composed from the alphabet A is denoted by

A+ :=
∞⋃

N=0

AN . (1.1)

A code or source code is a map c : M → A+
c from a set M of source messages into

the set A+
c of finite messages composed from a code alphabet Ac. With the size of

the alphabet given by |Ac| = K the code c is a K-ary code. The set C = c(M) is
called the codebook and each member is a code message or codeword . If the codebook
only contains messages of some fixed length N then c is a block code, otherwise it is a
variable-length code. A code is lossless or non-singular if there are distinct codewords
for distinct messages, i.e.

∀x, y ∈M : x 6= y ⇒ c(x) 6= c(y). (1.2)

In case of a lossy or singular code, the above condition is hurt, so some messages are
mapped to the same codeword. The decoder then can map the codeword back to a
representative source message being in the equivalence class of source messages that are
mapped to the same codeword, or he may return an error or an empty message. Lossy
codes are useful when it is more important to reduce the size of the message than to
ensure the correct decoding (a good example is the MP3 code for sound data).
In practice one is often interested in translating one message into another message.
This special type of code is based on the concept of a symbol code. A symbol code
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Figure 1.2: A code is a map from a set of source messages into a set of code messages composed
from an alphabet. For block codes the length of the code messages is fixed, for variable-length
codes it varies.

c translates each symbol from a source alphabet A into a codeword over some code
alphabet Ac, i.e. c : A → A+

c . The extension c+ of a symbol code c is a map from
the set of all finite messages over the source alphabet to finite messages over the code
alphabet by concetenation of the individual codewords, c : A+ → A+

c , where

c+(x1 · · ·xN ) := c(x1) · · · c(xN ). (1.3)

A symbol code is called uniquely decodable if its extension is non-singular. Therefore,
uniquely decodability is stronger than non-singularity. A symbol code might be lossless,
i.e. non-singular, on the source alphabet, but its extension might fail to be lossless
because the concetenation of codewords lead to ambiguities. If we are given a non-
singular symbol code, can we decide if it is also uniquely decodable? There is an
important theorem called the McMillan theorem which yields a criterion for the uniquely
decodability of symbol codes.

Theorem 1 (MacMillan) If the symbol code c : A → A+
c is uniquely decodable then

the codeword lengths lc(x) fulfill the Kraft inequality∑
x∈A

|Ac|−lc(x) ≤ 1. (1.4)

Conversely, given a set of codeword lengths that satisfy the Kraft inequality then there
exists a uniquely decodable code with these codeword lengths.

A proof of this theorem can be found in [17], pp.90. A uniquely decodable code which
satisfies the Kraft inequality with equality is called a complete code. Uniquely decod-
ability means that distinct source messages are mapped to distinct code messages, but
one might have to look at the entire code message to decode the source message. In
practice this means that one would have to wait until the transmission is completed
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before one can start the decoding process. A code which avoids this difficulty is the
prefix code. A prefix code is a symbol code where no codeword is the prefix of any
other codeword. Prefix codes are instantaneous, which means that they can be decoded
on the fly, i.e. letter by letter. Block codes are also prefix codes. A prefix code is
self-separating , as an example consider the variable-length code

c(A) = 0 (1.5)

c(B) = 10 (1.6)

c(C) = 110 (1.7)

c(D) = 111. (1.8)

This code is obviously a prefix code. The message 01011111010 is decoded as

01011111010 → 0 10 111 110 10→ ABDC. (1.9)

Although prefix codes form a proper subset of uniquely decodable codes, the MacMillan
theorem can also be formulated for prefix codes:

Theorem 2 (Prefix codes and Kraft inequality) If the symbol code c : A → A+
c is a

prefix code then the codeword lengths lc(x) fulfill the Kraft inequality (1.4). Conversely,
given a set of codeword lengths that satisfy the Kraft inequality then there exists a prefix
code with these codeword lengths.

Let us not ignore another type of code which is frequently used in practice but rarely
disussed in the theory, because it is not so effective. It is a code which reserves a special
symbol in the code alphabet as a separator between the codewords. Let us use the name
separator code and define it by

C�(x1 · · ·xN ) := c(x1)� c(x2)� · · · � c(xN ), (1.10)

where “�” represents the separator symbol in the code alphabet Ac. A famous example
for a separator code is the english writing: Sequences of grammatical elements are
translated into codewords composed from the english alphabet and the codewords are
separated by a blank space. Another example is the Morse code, where a pause in
the stream of dots and dashes serves as a codeword separator. Needless to say, also
separator codes are instantaneous, because the decoder can separate the incoming stream
of symbols whenever he receives the separator symbol.
In the context of quantum compression we will face yet another possibility to separate
the codewords, namely by use of a side channel that stores the length information of
each codeword. The decoder receives the length information through the side channel
and then separates the incoming stream of codewords in the main channel at the right
places. Also this kind of code is instantaneous.
Still another class of codes is of interest. Instead of encoding each symbol in the source
message separately we can devide the source message into blocks of length k and consider
each block as a supersymbol from an alphabet Ak = {x1 · · ·xk | xn ∈ A} which we
then assign a codeword. Let us call such code a supersymbol code ck. Its extension c+k
is then defined by

c+k (x1 · · ·xN ) := ck(x1 · · ·xk) · · · ck(xN−k+1 · · ·xN ), (1.11)
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where k must be a divisor of N . The “biggest” supersymbol code would be a code with
source block length k = N , i.e. every possible source message of length N is assigned
to its own codeword. Since the number of possible source messages of length N is vast
for N reasonably large, such a code is of no practical interest. In a theoretical context,
however, it can be quite useful, as we will see when proving Shannon’s source coding
theorem.

1.3 Information content

It is not so easy to define the “information content” of a message and there are many
sophisticated approaches. However, with the help of Shannon’s communication model
it is possible to define the information content of a message in a straightforward way:

The information content of a message is a measure for the effort of com-
municating it.

This effort of communication is determined by the code that is used for representing the
message. So let us define the code information content or size of an individual message
m ∈M for a given code c over the alphabet Ac by

Ic(m) := log2 |Ac| · Lc(m), (1.12)

where Lc(m) is the length of the codeword for m. The above expression can be in-
terpreted as a measure for the effort of communicating the message m by use of the
code c, and therefore as its size, i.e. the space it would occupy on a hard disk. The
factor log2 |Ac| accounts for the resources which are occupied by encoding and decoding
the message and the factor Lc(m) accounts for the effort of transporting the codeword
through the channel. The advantage of the code information measure Ic(m) is that it is
defined for individual messages and that it is independent of statistics. It only depends
on the code, reflecting the philosophy that there is no information contained in an object
without a code giving it some meaning. (For example, the codeword ”XWF$%&$FggHz”
may be a random message of symbols or may in a certain code represent the first digits
of π or in another code the beginning of a Mozart symphony.) If c+ is an extension of
the symbol code c then the code information content of a message is equal to the sum
of the information contents of the individual symbols:

Ic+(x1 · · ·xN ) = Ic(x1) + · · ·+ Ic(xN ). (1.13)

1.4 Compression

Compression means reducing the effort of communication on average. With respect
to a given fixed code alphabet, compression means reducing the expected length of the
encoded message. In order to find out if a code is compressive or not, we need statistical
knowledge about the source message ensemble.

Assume that we are given a discrete set M of possible source messages and a probability
distribution p : M → [0, 1]. The message m ∈ M is sent with “apriori probability”
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p(m) where ∑
m∈M

p(m) = 1. (1.14)

The pair M = (M, p) is a statistical ensemble and any function f : M → R is a
random variable, symbolized by f(M). The expectation value of the random variable
f(M) is given by

〈f(M)〉 :=
∑

m∈M
p(m) f(m), (1.15)

and the uncertainty of f(M) is defined as

∆f(M) :=
√
〈f2(M)〉 − 〈f(M)〉2. (1.16)

Since the code information Ic is a real-valued function on M, it represents a random
variable, and we define the code information content Ic(M) or size of the message
ensemble M using the code c as the expectation value of Ic(M):

Ic(M) := 〈Ic(M)〉 = log2 |Ac|
∑

m∈M
p(m)Lc(m) (1.17)

= log2 |Ac| · 〈Lc(M)〉. (1.18)

Let us understand a raw code as a code that assigns one symbol for each message in M.
Hence, the code alphabet is of the same size as the source message set, |Ac| = |M|,
and the codeword length is Lc(m) ≡ 1, so the ensemble information for a raw code is
equal to

I0(M) := log2 |M|, (1.19)

which we call the raw information content or raw size of the ensemble M . The raw
information content represents the uncompressed size of a message ensemble and is a
useful notion that serves as a reference for the effectivity of a code, which we define as

ηc(M) :=
I0(M)
Ic(M)

. (1.20)

A code c is compressive on the ensemble M exactly if it fulfills

ηc(M) > 1, (1.21)

or equivalently

Ic(M) < I0(M). (1.22)

A code with an effectivity smaller than 1 is expansive. Expansive codes add redundancy
to the messages, which can be very useful especially in the presence of noise. In this
context the error correcting codes are of particular interest.

The task of compression is thus bringing the size of the message ensemble, given by
Ic(M), below the raw information content I0(M). There are two ways of compressing
a message ensemble M : block compression and variable-length compression.
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Block compression

If we try for block compression, then all the codewords must have the same length L.
Thus with Ac being the code alphabet we have |Ac|L distinct codewords. If we want a
lossless code, then we have to encode all possible messages, which requires

|Ac|L ≥ |M|. (1.23)

Taking the binary logarithm of the above relation we obtain

L · log2 |Ac| ≥ log2 |M| = I0(M). (1.24)

The code information content of the block code reads

Ic(M) = log2 |Ac|
∑

m∈M
p(m)Lc(m) (1.25)

= L · log2 |Ac|
∑

m∈M
p(m) (1.26)

= L · log2 |Ac| (1.27)

≥ I0(M), (1.28)

where in the last line we used (1.24). Thus there is no lossless compression possible
when using a block code. If we anyway want to compress the message ensemble using a
block code, we have to choose a lossy code. Let us assume that only messages in some
set T ⊂M are encoded, then the loss of information is measured by the fidelity of the
code c as the probability of successful decoding, given by

Fc =
∑
m∈T

p(m). (1.29)

The fidelity is connected with the probability of failure, ε, of decoding the correct source
message by

Fc = 1− ε. (1.30)

Now assume that the set T is a set of typical messages which contains almost all the
probability, ∑

m∈T

p(m) ≈ 1, (1.31)

i.e. ε is very small. Since T is assumed to be smaller than the source message set,
|T | < |M|, the code fulfills the condition

|T | ≤ |Ac|L < |M|, (1.32)

which implies
L · log2 |Ac| < log2 |M|. (1.33)

The code information content now reads

Ic(M) = log2 |Ac|
∑
m∈T

p(m)Lc(m) (1.34)

= L · log2 |Ac|
∑
m∈T

p(m) (1.35)

≈ L · log2 |Ac| (1.36)

< I0(M), (1.37)
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where in the last line we used (1.33). Thus by neglecting irrelevant information (the
messages outside of T ) we can achieve compression by using a block code.

Variable-length compression

The second kind of compression is variable-length compression. Here the lengths of the
codewords are allowed to vary. In case of a lossless code there must be a codeword
for every message in M. As we can see by definition (1.12), in order to compress
the messages without losing information we have to reduce the expected length L =
〈Lc(M)〉 of the codeword while encoding every message. Consequently, highly probable
messages obtain short codewords and less probable messages obtain longer codewords.
This is the general strategy in variable-length compression.

1.5 Random messages

A type of message ensemble of particular interest is the random message X = X1X2 · · · ,
which is a sequence of statistically independent ensembles Xn of symbols xn drawn from
an alphabet A with a certain apriori probability distribution p(xn). A random message
of length N is denoted by X = XN and the probability distribution on the resulting set
of possible sequences is given by

p(x1 · · ·xN ) = p(x1) · · · p(xN ). (1.38)

The random message can be regarded as a first approximation to a real-world message.
For example, each language has its own characteristic apriori probability distribution
of symbols in a written text. By determining the relative frequencies of the symbols
appearing in a given text one can estimate the corresponding apriori probabilities and
gain information about the corresponding language.
Let c+ be the extension of a symbol code c on the source alphabet A, then the length
of the code sequence for a source sequence xN = x1 · · ·xN is equal to the sum of the
lengths of the individual codewords,

Lc+(xN ) =
N∑

n=1

lc(xn). (1.39)

The average length of a code sequence is thus given by

〈Lc+(XN )〉 = 〈
N∑

n=1

lc(Xn)〉 = N · 〈lc(X)〉. (1.40)

As a consequence, for symbol codes the code information content of the sequence
ensembleXN isN times the code information content of the individual symbol ensemble,

Ic+(XN ) = 〈Ic(Xn)〉 = N log2 |Ac| · 〈Ic(X)〉 (1.41)

= N · Ic(X), (1.42)

or equivalently

Ic(X) =
1
N
Ic+(XN ). (1.43)
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The same goes for the raw information content,

I0(XN ) = log2(|A|N ) = N log2 |A| = N · I0(X). (1.44)

1.6 Shannon’s source coding theorem

Shannon’s famous source coding theorem [52] establishes a link between the average
information per symbol and the Shannon entropy of the symbol ensemble in case of
asymptotically faithful codes. A code is asymptotically faithful if its decoding fidelity
reaches unity in the limit of infinitely long source messages,

Fc → 1 for N →∞. (1.45)

With the help of the code information defined by (1.17), the theorem can be formulated
as follows.

Theorem 3 (Source coding theorem) Given a symbol ensemble X = (A, p). There
is a an asymptotically faithful code c on the random message XN such that the code in-
formation content per source symbol approaches for long messages the Shannon entropy,
i.e.

1
N
Ic(XN ) → H(X) for N →∞ (1.46)

where

H(X) := −
∑
x∈A

p(x) log2 p(x) (1.47)

is the Shannon entropy of the ensemble X. It is impossible to faithfully compress below
H(X) bits per symbol, i.e.

1
N
Ic(XN ) ≥ H(X), (1.48)

for any asymptotically faithful code c.

Shannon’s theorem thus states that it is asymptotically possible to compress messages
down to H(X) bits per symbol. If we compress the messages below H(X) then we will
lose all information in the asymptotic limit.

1.6.1 Block compression

One way to derive the source coding theorem is to use block compression. As we have
seen above, this requires that the code is lossy, i.e. we cannot encode all source messages.
Shannon’s idea was to find a suitable set of typical messages. Since the typical messages
form a tiny subset of all possible messages, one needs much less resources to encode
them. Shannon showed that the probability for the occurence of non-typical messages
tends to zero in the limit of large message lengths. Thus we have the paradoxical
situation that although we “forget” to encode most messages, we lose no information
in the limit of very long messages. In fact, we make use of redundancy, i.e. we do not
encode “unnecessary” information represented by messages which almost never occur.
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messages

possible
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codewords

Figure 1.3: The concept of Shannon’s block compression. Only typical messages are encoded
into a message. Because the set of typical messages is much smaller than the set of all possible
messages, the effort of communicating only typical messages is reduced. For very long messages
almost every message is a typical message so the probability of a decoding error tends to zero
in the limit of infinitely long messages.

Let us now give a hand-waving proof of Shannon’s source coding theorem for block
codes. Consider a message x = xN with N very large. Typically, the symbol ai will
appear with the frequency Ni ≈ Npi. Hence, the probability of such a typical message
is roughly

ptyp = pN1
1 · · · pNi

K =
K∏

i=1

pNpi
i . (1.49)

The set T of typical messages contains almost all the probability,∑
xN∈T

p(xN ) ≈ 1. (1.50)

Because p(xN ∈ T ) ≈ ptyp, we have∑
xN∈T

p(xN ) ≈
∑

xN∈T

ptyp = |T | · ptyp ≈ 1, (1.51)

so the set T of typical sequences is roughly of the size

|T | ≈ 1
ptyp

. (1.52)

If we encode each member of T by a binary message we need approximately

IN = log2 |T | = − log2 ptyp (1.53)

= − log2

K∏
i=1

pNpi
i = −N

K∑
i=1

pi log2 pi (1.54)

= N ·H(X) (1.55)



14 Classical Information

bits. Thus for very long messages the average number of bits per symbol reads

I =
1
N
IN = H(X). (1.56)

Thus we find that in the limit of infinitely long messages the information per symbol
approaches the Shannon entropy of the symbol ensemble, (1.46). A good review on the
issue can also be found in [42, 46], also including a rigorous proof of the source coding
theorem.

1.6.2 Variable-length compression

Is Shannon’s source coding theorem also valid for variable-length codes or do we need
more or less resources? The answer is that the source coding theorem is also valid in
this case. This book has a focus on variable-length codes, so let us get a little bit more
into detail.

Since the code c+ on the set AN of source messages of length N shall be lossless, the
corresponding symbol code c on the alphabet A must be uniquely decodable. Consider
a uniquely decodable symbol code c : A → Ac where the length of the codeword for
the symbol x ∈ A is given by lc(x). Define d = |A| then c is a K-ary code. Because
c is assumed to be uniquely decodable, it follows from the MacMillan theorem that the
codeword lengths satisfy the Kraft inequality (1.4),

Q :=
∑
x∈A

K−lc(x) ≤ 1, (1.57)

which implies that

logbQ ≤ 0, (1.58)

for any logarithmic basis b. Now define implicit probabilities q(x) by

q(x) :=
1
Q
K−lc(x), (1.59)

then by taking the K-ary logarithm the above equation can be formed into

lc(x) = − logK q(x)− logK Q. (1.60)

Thus the expected length of the codeword ensemble is given by

L := 〈lc(X)〉 =
∑
x∈A

p(x) lc(x) (1.61)

= −
∑
x∈A

p(x) logK q(x)− logK Q. (1.62)

The Gibbs inequality (1.119) states that∑
x

p(x) logK q(x) ≤
∑

x

p(x) logK p(x), (1.63)
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for any two probability distributions p(x), q(x), therefore the expected length (1.62) is
bounded from below by

L ≥ −
∑
x∈A

p(x) logK p(x), (1.64)

where we have used (1.58). Because logK x = log2 x/ log2 d the above inequality implies
that

log2K · L ≥ H(X). (1.65)

By definition (1.12) the code information content equals

Ic(X) = log2K · L, (1.66)

so inequality (1.65) can be written as

Ic(X) ≥ H(X). (1.67)

Equality is achieved if and only if the individual lengths satisfy

lc(x) = − logK p(x). (1.68)

In other words:

The code information of the source symbol ensemble is for any uniquely de-
codable code bounded from below by the Shannon entropy of the ensemble.
The bound can be reached at least in the asymptotic limit.

This is a very important result and it justifies once more the central role of the Shannon
entropy as a measure for the information content of a message ensemble.
Now let us restrict to the case of a binary code. Here we have Ic(X) = L, and therefore

L ≥ H(X). (1.69)

There is a code which has been proposed by Shannon [52] and is therefore referred to
as the Shannon code. Here it is:

1. Arrange the symbols a1, . . . , aK in the source alphabet A in order of decreasing
probability, so that p1 ≥ · · · ≥ pK .

2. Let Pk =
∑k−1

i=1 pi be the cumulative probability for the symbol ak. The codeword
for the symbol ak is obtained by expanding Pk as a binary number up to the length

lk = d− log2 pke. (1.70)

This code is also known under the name Shannon-Fano code, because R.M. Fano had a
similiar idea (which was acknowledged by Shannon [52]). By construction, the Shannon
code maps each symbol x ∈ A to a binary codeword of the length

lc(x) = d− log2 p(x)e, (1.71)



16 Classical Information

therefore the codeword lengths fulfill

− log2 p(x) ≤ lc(x) ≤ − log2 p(x) + 1. (1.72)

Multiplying the above relation by p(x) and summing over x yields

H(X) ≤ L ≤ H(X) + 1. (1.73)

Now we still have an overhead of at most 1 bit. This overhead can be reduced by use
of a supersymbol code (1.11), which considers each block of length k as a supersymbol
from the alphabet Ak and encodes it into a binary sequence. The block length k must
be a divisor of N . Let us choose k = N , then the same arguments as above lead to

H(XN ) ≤ L ≤ H(XN ) + 1, (1.74)

where now

L = 〈lc(XN )〉. (1.75)

Because the sequence XN consists of N independent ensembles X, we have

H(XN ) = N ·H(X), (1.76)

and thus after dividing by N the inequality (1.74) transforms into

H(X) ≤ 1
N
L ≤ H(X) +

1
N
. (1.77)

Therefore the expected codeword length per symbol,

LN :=
1
N
L (1.78)

obeys the inequality

H(X) ≤ LN ≤ H(X) +
1
N
. (1.79)

If we let N →∞ then we find that

LN → H(X), N →∞, (1.80)

so the Shannon code is a lossless code that is maximally compressing in the asymptotic
limit. This proves the source coding theorem for the case of uniquely decodable symbol
codes.

Although this is a brilliant result, the Shannon code is not an optimal code, i.e. a code
that minimizes the expected length of a message ensemble. The Shannon code is only
asymptotically optimal.
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Figure 1.4: The algorithm for generating the Huffman code, operating on a particular alphabet.

The Huffman code

An optimal prefix code is given by the Huffman code and it is generated by the following
algorithm [42]:

1. Choose two of the least probable symbols. These two symbols will be given the
longest codewords, which will have equal length, and differ only in the last digit.

2. Combine these two symbols into a single symbol, and repeat.

As an example, consider the alphabet A = {a, b, c, K, e} with the respective probabilities
P = {0.25, 0.25, 0.2, 0.15, 0.15}. The algorithm that generates the Huffman code is
depicted in Fig. 1.4 and yields the codewords C = {00, 10, 11, 010, 011}. In contrast to
the Shannon code, the lengths of the codewords are generally not equal to d− log2 p(x)e,
instead they can be smaller or bigger. The average length of the Huffman codewords
is smaller or equal to that of the Shannon codewords. Although the Huffman code
compresses better than the Shannon code, in the context of a proof it might be more
practical to use the Shannon code, right because its codeword lengths are explicitely
given by d− log2 p(x)e.

1.7 Channels

A channel is a physical system that is able to transport the encoded message through
space and time. More precisely: A source message is encoded into a code message which
is transported via the channel, then the code message is decoded back into the source
message. The entire procedure represents the transmission of the source message. We
can also speak of the storage of the message in the channel. The message is stored (in
an encoded form) in the channel by the sender and is read out by the receiver. These
are all equivalent formulations.
So far we have only considered the encoding and decoding of a message, but not the
transport of the corresponding code message through the communication channel. As
long as the channel transports the message in an absolutely faithful manner, it does not
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play an important role indeed. But what if there is noise on the channel which influences
the transmission?

1.7.1 Probabilities

The probability that the decoded message coincides with the source message is called
the fidelity of the transmission. The fidelity is influenced on one hand by the nature
of the code, e.g. if it is a lossy code, and on the other hand by the properties of the
channel, e.g. if there is noise on the channel. The influence of the channel is described
by its probability to transform one message into another. The transformation of one
message x into another message y is a transition and is symbolized by x → y. This
transition can also be regarded as a conditional event, namely the event of receiving y
when x has been sent, which is symbolized by y|x. Thus a conditional event y|x must
be read from right to left when interpreted as a transition,

y|x ≡ x→ y. (1.81)

The probability for this to happen is given by the transition probability or conditional
probability

p(x→ y) ≡ q(y|x) ∈ [0, 1]. (1.82)

The channel is completely described by the transition probability q(y|x), which has to
fulfill ∑

y∈Y
q(y|x) = 1, ∀x ∈ X , (1.83)

where X is the set of all possible source messages and Y is the set of all receivable
messages. Condition (1.83) means that there must be some message coming out of the
channel. If we wish to include channel losses, i.e. the case where no message is received,
then we have to include the empty message y0 = � in the set Y. The joint probability
that x is sent and y is received is then defined by

p(x, y) := q(y|x)p(x), (1.84)

where p(x) is the apriori probability that x is chosen by the sender. If p(x) 6= 0 then
one has

q(y|x) =
p(x, y)
p(x)

. (1.85)

The reader may wonder why here the joint probability is defined on the basis of the
conditional probability and not vice versa. The reason is that q(y|x) is determined by the
channel alone, whose properties are completely independent from the apriori probabilities
p(x) that a particular message is chosen by the sender. From this point of view it does
not make sense to consider the joint probability p(x, y) as more fundamental than the
transition probability q(y|x). Moreover, the right-hand side of (1.85) is undefined for
p(x) = 0, while there is no reason for q(y|x) to be apriorily undefined, because it
represents an intrinsic property of the channel and does not depend on the sender’s
individual decision to send or not to send particular messages. The transmission process
consists of two acts, namely storing the message x in the channel and reading out
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the message y from the channel. The joint probability for both events, storing x and
reading out y, is then given by the product of the probabilities of these two acts, namely
p(x, y) = q(y|x)p(x). Condition (1.83) implies for the joint probability that∑

y

p(x, y) =
∑

y

q(y|x)p(x) = p(x), (1.86)

as desired. The probability q(y) that the message y is received, regardless of what
message is sent, is defined by

q(y) :=
∑

x

p(x, y). (1.87)

In this context, q(y) is no apriori probability, because it is determined by the apriori
probability p(x) and the transition probability q(y|x). In order to avoid such confusion,
let us call p(x) the input probability and q(y) the output probability . Finally we define
the aposteriori probability p(x|y) that the message x has been sent provided that the
message y is received, by

p(x|y) :=
p(x, y)
q(y)

, (1.88)

which is thus also a conditional probability, just like q(y|x). Using definition (1.84) we
find the relation

p(x|y) =
q(y|x)p(x)

q(y)
, (1.89)

which is also known as Bayes’ rule, and which can be rewritten as

p(x|y) =
q(y|x)p(x)∑
x q(y|x)p(x)

. (1.90)

Noiseless channel

A channel with the transition probability

q(y|x) = δ(x, y), (1.91)

is called a noiseless channel , where the discrete δ-function is straightforwardly defined
for messages of any kind by

δ(x, y) :=

{
1 ;x = y

0 ;x 6= y
. (1.92)

It follows:

p(x, y) = q(y|x)p(x) = δ(x, y)p(x), (1.93)

and

q(y) =
∑

x

p(x, y) =
∑

x

δ(x, y)p(x) = p(y), (1.94)
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and

p(x|y) =
p(x, y)
q(y)

=
δ(x, y)p(x)

p(y)
= δ(x, y) = q(y|x). (1.95)

The action of a noiseless channel can be completely disregarded, just as if the message
would directly go from Alice to Bob. Any other channel which does not obey (1.91) is
called a noisy channel.

Memoryless channel

Mostly one considers messages that are finite sequences x = x1 · · ·xN of N symbols xn

taken from some alphabet A, and it is these sequences that can be received, i.e.

X = Y = AN . (1.96)

The apriori probabilities are mostly that of a random message

p(x1 · · ·xN ) = p(x1) · · · p(xN ), (1.97)

and one says that the message is emitted from a memoryless source. Yet mostly, the
channel is a memoryless channel , i.e. a channel whose transition probabilities have the
form

p(y1 · · · yN |x1 · · ·xN ) = p(y1|x1) · · · p(yN |xN ), (1.98)

which means that a memoryless channel transforms every single symbol while “for-
getting” the other symbols. The memoryless channel is completely described by the
individual transition probabilities q(y|x). One sometimes adds that the above defined
channel is a channel without feedback, which means that the input symbols do also not
depend on the past output symbols.

1.7.2 Entropies

The Shannon entropy H(X) of an ensemble X = {X , p} is, as we have seen, a good
measure for the information content of X if it is interpreted as an ensemble of messages
that are sent with a certain probability. One can faithfully compress the messages to
H(X) bits on average, but not below. Because it is so beautiful, here once more the
Shannon entropy:

H(X) = −
∑
x∈X

p(x) log2 p(x). (1.99)

The Shannon entropy is non-negative,

H(X) ≥ 0, (1.100)

where equality is reached only in case of p(x) = δ(x, x′) for some x′ ∈ X . (We have to
be a bit careful because log 0 is undefined, but a closer analysis shows that p log p→ 0
for p → 0.) As we see, H(X) is based on the probability p(x) that Alice selects a
message x ∈ X and sends it to Bob through the channel. Shannon’s source coding
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theorem showed that the optimal length of a binary codeword for the message x is
lc(x) = − log2 p(x), therefore we are entitled to consider

I(x) := − log2 p(x) (1.101)

as the information content of the individual message x from the ensemble X. We can
also interpret I(x) as the “surprise value” that is connected with learning the message
x. The less probable the message, the more surprise when learning it. If the probability
is 1, then log2 1 = 0, so there is no surprise at all. Now I(X) = − log2 p(X) represents
a random variable, so we can understand H(X) as the expectation value of this random
variable,

H(X) = 〈I(X)〉 = 〈− log2 p(X)〉. (1.102)

In other words, H(X) is the expected suprise when learning the value of X. (A peculiar
combination of words: a “surprise” that is “expected”? Probably “average surprise”
would do better here.) In yet another interpretation, H(X) is Bob’s apriori ignorance
about what Alice has sent. By learning the value of X this ignorance is reduced to
zero. As we can see, there is a lot of approaches to information, but all of them lead to
Shannon entropy.

Now there is a channel between Alice and Bob which determines the transition probability
q(y|x) that on Bob’s side of the channel it is the message y ∈ Y that he receives
when Alice has sent x. Knowing both probabilities p(x) and q(y|x) Bob can infer,
by use of Bayes’ rule (1.89), the aposteriori probability p(x|y) which represents the
probability that x has been sent given that y is received. This is a valuable function,
because it reflects Bob’s uncertainty about the message that Alice has sent. (It does not
reflect his ignorance, because his ignorance is already connected to the apriori probability
p(x).) Since p(x|y) is, for any fixed y, a probability distribution with respect to x, it is
straightforward to consider the function

H(X|y) := −
∑

x

p(x|y) log p(x|y), (1.103)

which is just the entropy of the ensemble X|y of send events, which are conditional
on the fact that y is received. (One might think of calling it the “conditional entropy”
but this notion is reserved for another expression given below.) The function H(X|y)
can be interpreted as Bob’s specific uncertainty about the original source message when
he receives y. For example, in case of a noiseless channel we have q(y|x) = δ(x, y),
which implies p(x|y) = δ(x, y), so the specific uncertainty vanishes. The average of the
specific uncertainty over the ensemble Y of receive events is then given by the function

H(X|Y ) :=
∑
x,y

q(y)H(X|y), (1.104)

which is called the conditional entropy or equivocation. Because for each y the entropy
H(X|y) is non-negative, the conditional entropy is also non-negative,

H(X|Y ) ≥ 0. (1.105)
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Using the definition of the joint probability (1.84) we find that

H(X|Y ) =
∑
x,y

q(y)H(X|y) (1.106)

= −
∑
x,y

q(y)p(x|y) log2 p(x|y) (1.107)

= −
∑
x,y

p(x, y) log2 p(x|y), (1.108)

which is nothing but the average of the random variable f(X,Y ) = − log2 p(x|y),

H(X|Y ) = 〈− log2 p(x|y)〉. (1.109)

The conditional entropy H(X|Y ) represents Bob’s average uncertainty about the mes-
sage that Alice has sent. (Not another peculiar combination of words: “expected un-
certainty”. Let us stick to “average”, that sounds better and means the same.) For a
lossless channel we have H(X|Y ) = 0, so there is no uncertainty for Bob. Following this
interpretation of the conditional entropy it is straightforward to consider the expression

H(X :Y ) := H(X)−H(X|Y ), (1.110)

which is called the mutual information. It represents Bob’s apriori ignorance reduced by
his average uncertainty about Alice’s message. This difference yields Bob’s information
gain about X when he learns the value of Y . We have

H(X) ≥ H(X :Y ) ≥ 0. (1.111)

In case of a lossless channel the mutual information is maximized to H(X :Y ) = H(X),
so the information contained inX is not reduced after having passed the channel. Simple
calculations show that

H(X :Y ) = H(Y )−H(Y |X), (1.112)

and also
H(X :Y ) = H(X) +H(Y )−H(X,Y ), (1.113)

where
H(X,Y ) := −

∑
x,y

p(x, y) log2 p(x, y) (1.114)

is the joint entropy of X and Y . This entropy can be interpreted as the overall ignorance
about what happens at all in the transmission. As one can see, the mutual information
is symmetric,

H(X :Y ) = H(Y :X), (1.115)

which reflects the fact that one can learn as much about X by learning Y as one can
learn about Y by learning X.
Lastly we should mention the relative entropy of two ensembles X and Y over the same
alphabet,

H(X‖Y ) :=
∑

x

p(x) log2

p(x)
q(x)

. (1.116)
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As a functional of the two probability distributions p and q is is also known as the
Kullback-Leibler distance,

D(p‖q) ≡ H(X‖Y ). (1.117)

However, D(p‖q) is not a distance in the strict sense, because in general it is not
symmetric and does not fulfill the triangle relation. The non-negativity of the relative
entropy is known as the Gibbs inequality ,

D(p‖q) ≥ 0
resp. H(X‖Y ) ≥ 0.

(1.118)

The Gibbs inequality implies that∑
x

p(x) log2 q(x) ≤
∑

x

p(x) log2 p(x), (1.119)

which is a very useful relation.

1.7.3 Channel capacity

Say we have a noisy channel. In order to avoid decoding errors, we need to add some
redundancy to the messages, so that the original message can still be decoded if there
are some badly transmitted symbols. The aim of such error correcting codes is opposed
to the aim of a compressing code, namely expanding the length of the codewords so
that an error here and there does not affect the decoding fidelity. More precisely, an
error correcting code is a block code c : A → An

c which maps each symbol from the
source alphabet A to a block of n symbols from a code alphabet Ac. The rate of the
code is defined by

R :=
log2 |A|

n
, (1.120)

which represents the number of data bits per code symbol. The codebook C = c(A) ⊂
An

c consists of 2nR = |A| codewords, one for each source symbol. An error correcting
code needs a clever decoding function g which is in this case not simply given by c−1.
Instead, the decoding function g : An

c → A corrects errors by mapping messages in the
neighbourhood of c(x) back to x. This “neighbourhood” is defined by the Hamming
distance, i.e. the number of different digits. Now given a noisy channel, the task is to
find an error correcting code with an upper bound for the rate R such that all messages
still can be send in an asymptotically faithful manner, i.e. for n→∞. Shannon’s great
achievement was to find an explicit and non-vanishing upper bound for the rate of the
code. This bound is given by the channel capacity

C := max
p(x)

H(X :Y ), (1.121)

where the maximization is performed over all possible apriori probabilities p(x) over the
source alphabet A.

Theorem 4 (Channel coding theorem) An asymptotically faithful error correcing
code c has a rate R which is bounded from above by

R ≤ C, (1.122)
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where C is the channel capacity. Conversely, to every R ≤ C there is an asymptotically
faithful error correcting code with this rate.

In practice it is not so easy to actually calculate the channel capacity. However, the case
of a noiseless channel is very simple: since H(X :Y ) = H(X) and since H(X) can be
maximized to log2 |A| by a uniform distribution, the capacity of a noiseless channel is
C = log2 |A|. Therefore we have R ≤ log2 |A| and thus n ≥ 1, which means that there
is a faithful error correcting code with n = 1, i.e. without any redundancy.
Since it is not our task to consider noisy channels and error correcting codes, we will not
further go into detail here. The reader may find detailed a discussion in [52, 17, 42, 46]
and other related literature.



Chapter 2

Quantum Information

Assume that the system that Alice uses to store her message is a quantum system. A
quantum system has much more possibilities than a classical system. It cannot only be
in one out of several possible states, but also in any superposition of these states. If the
system is measured, the superposition is in general destroyed. This peculiar behaviour of
quantum systems has a deep impact on the processing of information, and so the notion
of “quantum information” has been coined. To put it short: Classical information is the
information that is stored by manipulating a classical system, and quantum information is
the information that is stored by manipulating a quantum system. Quantum information
is a generalized form of information: By choosing mutually orthogonal states both
for encoding and decoding, and by addressing each qubit individually, the quantum
information stored in the system behaves classical. If the states are non-orthogonal
and/or the qubits are not all addressed individually, then the information behaves non-
classical. Thus the distinguishing features between classical information and quantum
information are superposition and entanglement.

2.1 States

2.1.1 Classical states

Classically, the state of a system is represented by a probability density ρ on a phase
space P. Let the phase space be endowed with the phase space measure µ,

µ(A) =
∫
A
dµ(x), (2.1)

for all measurable subsets A ⊂ P. For example, the phase space of N particles is the
space P = R6N of the phase coordinates x = (x1, . . . ,xN ;p1 . . .pN ). The phase space
measure is then given by dµ(x) = d3x1 · · · d3xNd

3p1 · · · d3pN . A probability density ρ
is a function on the phase space with the following properties

1. ρ is real-valued,
ρ∗ = ρ. (2.2)

2. ρ is non-negative,
ρ ≥ 0. (2.3)

25
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3. ρ is normalized to unity, ∫
dµ(x) ρ(x) = 1, (2.4)

where we understand
∫
dµ(x) ≡

∫
P dµ(x).

The set of all probability densities ρ on P constitutes the state space S(P). Quite
general, the state of a system is determined by its properties. Let us distinguish between
properties and property values. For example, “Color” is a property, whereas “red, green,
blue” are corresponding property values. Observable properties of the system are repre-
sented by observables, which are given by real-valued functions on the phase space. In
our terminology the property values of an observable A : P → R are the function values
a ∈ A, where

A = {A(x) | x ∈ P} (2.5)

is the range of A, thus we relate

Function A =̂ Observable property (2.6)

Function value a =̂ Property value. (2.7)

The expectation value of an observable A is defined as

〈A〉 :=
∫
dµ(x) ρ(x)A(x), (2.8)

and the uncertainty of A as

∆A :=
√
〈A2〉 − 〈A〉2. (2.9)

Time is introduced into the theory through the parametrization of states and observables
by an external parameter t ∈ R, thus ρ 7→ ρ(t) and A 7→ A(t). The expectation value
of an observable A at time t is therefore given by

〈A〉(t) =
∫
dµ(x) ρ(x; t)A(x; t). (2.10)

While the time-dependence of observables is externally determined, the time evolution
of the system state is governed by the Liouville equation

∂

∂t
ρ(t) = {H(t), ρ(t)}, (2.11)

where H(t) is the Hamiltonian, i.e. the total energy of the system, and where {·, ·} is
the Poisson bracket, defined by

{A,B} :=
d/2∑
i=1

∂A

∂xi

∂B

∂pi
− ∂B

∂xi

∂A

∂pi
. (2.12)

with d = dimP. The initial state is given by some ρ0 ∈ S(P) so that ρ(t) has to fulfill
the initial condition

ρ(t0) = ρ0. (2.13)
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A system is said to be in a microstate if the probability density is a δ-function, i.e.

ρ(x; t) = δ(x− x(t)), (2.14)

for some trajectory x(t) ∈ P, otherwise the system is in a macrostate. For a microstate
the point x(t) comprises the exact phase space coordinates of the system at time t. The
expectation value of an observable A at time t then reads

〈A〉(t) = A(x(t); t), (2.15)

and the uncertainty is vanishing,
∆A(t) = 0. (2.16)

If the system is at some time t in a microstate then its state is completely specified by
the position and momentum of any particle which is part of the system. In this case
any observable has at any time a unique value without any uncertainty, and the Liouville
equation (2.11) guarantees that a microstate always evolves into a microstate. Therefore
the property value corresponding to the observable A is at any time t precisely given by

a(t) = 〈A〉(t) = A(x(t); t). (2.17)

The entropy of the system is defined as

S(ρ̂) := −
∫
dµ(x) ρ(x; t) log2 ρ(x; t). (2.18)

Because S is not a function on phase space, it does not represent an observable but
rather a feature of the system state. For example, if only some macroscopic quantities
like particle number, temperature and pressure are known, then the system is in a
macrostate which is compatible with the value of these quantities and which at the
same time maximizes the entropy.
The structure of the classical state concept allows the following realistic interpretation:
Any system is actually in a microstate at any time, and only the observer’s incomplete
knowledge is responsible for the statistical description by macrostates. The values of
all observables represent objective properties of the system, because for microstates
there is no uncertainty throughout the course of time. The entropy can be regarded
as a measure for the observer’s ignorance about the system. Since the entropy of a
microstate is negative infinity, this indicates that the observer needs an infinite amount of
resources to gain complete knowledge about the system. Thus for any finite information-
processing observer system (and thus for any human being) the system appears to be
in a macrostate, although it actually is in a microstate.

2.1.2 Quantum states

The classical state concept can straightforwardly be transferred to the quantum case.
The state of a quantum system is represented by a density matrix ρ̂ on a Hilbert spaceH.
For example, the Hilbert space of N spin-1/2 particles is the spaceH = L2(R3N )⊗C2N .
A density matrix is an operator ρ̂ everywhere defined on H which fulfills the following
conditions:
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1. ρ̂ is self-adjoint, i.e.
ρ̂† = ρ̂, (2.19)

which is a short notation for 〈ψ|ρ̂|ψ〉∗ = 〈ψ|ρ̂|ψ〉 for all |ψ〉 ∈ H.

2. ρ̂ is non-negative, i.e.
ρ̂ ≥ 0, (2.20)

which is a short notation for 〈ψ|ρ̂|ψ〉 ≥ 0 for all |ψ〉 ∈ H.

3. ρ̂ has unit trace, i.e.
Tr{ρ̂} = 1, (2.21)

where the trace of an operator Â is defined through

Tr{Â} :=
d∑

n=1

〈en|Â|en〉, (2.22)

with {|e1〉, . . . , |ed〉} being an arbitrary orthonormal basis of H, and d = dimH.

For Hilbert spaces of finite dimension d the density matrix

ρ̂ =
1
d
1 (2.23)

is called the complete mixture. For infinite-dimensional Hilbert spaces there is no com-
plete mixture. In this case the Gaussian states form the class of states which are closest
to a complete mixture, because they maximize the entropy for fixed first and second
moments. A discussion of Gaussian states, however, would go beyond the scope of this
book. The set of all density matrices on H constitutes the state space S(H). Note,
however, that the state space is not a vector space, in contrast to H. Any density matrix
has a spectral decomposition of the form

ρ̂ =
∑

k

λk|uk〉〈uk|, (2.24)

where the eigenvalues have the properties of a probability distribution, i.e. λk ≥ 0,∑
k λk = 1. An observable is represented by a self-adjoint operator on H, and the

eigenvalues of the operator represent the corresponding property values. If a is an
eigenvalue of the self-adjoint operator Â, i.e. Â|ua〉 = a|ua〉 for some eigenvector
|ua〉 ∈ H, then we relate

Operator Â =̂ Observable property (2.25)

Eigenvalue a =̂ Property value. (2.26)

The expectation value of an observable Â is defined as

〈Â〉 := Tr{ρ̂Â}, (2.27)

and the uncertainty of Â is defined as

∆A :=
√
〈Â2〉 − 〈Â〉2. (2.28)
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Time is introduced through the parametrization of states and observables by an external
parameter t ∈ R, thus ρ̂ 7→ ρ̂(t) and Â 7→ Â(t). The expectation value of an observable
Â at time t is therefore given by

〈Â〉(t) = Tr{ρ̂(t)Â(t)}. (2.29)

Throughout this book we are working in the Schrödinger picture. In this picture, the
time-dependence of observables is externally given, and the time evolution of the system
state is governed by the von-Neumann equation

∂

∂t
ρ̂(t) =

1
i~

[Ĥ(t), ρ̂(t)], (2.30)

where Ĥ(t) is the Hamiltonian, and where [·, ·] is the commutator , defined through

[Â, B̂] := ÂB̂ − B̂Â. (2.31)

The initial state is given by some ρ̂0 ∈ S(H), so that ρ̂(t) has to fulfill the initial
condition

ρ̂(t0) = ρ̂0. (2.32)

The time-dependent system state can be expressed by

ρ̂(t) = Û(t, t0)ρ̂0Û
†(t, t0), (2.33)

where the unitary time evolution operator Û(t, t′) obeys the Schrödinger equation

i~
∂

∂t
Û(t, t′) = Ĥ(t)Û(t, t′), (2.34)

together with the condition
Û(t, t) = 1. (2.35)

Entanglement

If one considers a system which is composed out of several subsystems, then the Hilbert
space of the total system is the tensor product of the individual Hilbert spaces,

H = H1 ⊗H2 ⊗ · · · . (2.36)

Let us restrict here to bipartite systems, i.e. systems which are composed out of two
subsystems,

H = A⊗ B. (2.37)

The convex sum of products of density matrices, i.e. the operator

ρ̂ =
∑

k

λk (σ̂k ⊗ ω̂k), (2.38)

where σ̂k ∈ S(A), ω̂k ∈ S(B) and where λk ≥ 0,
∑

k λk = 1, is called a separable
state. Any non-separable state is called an entangled state. Separable states correspond
to systems which are classically correlated, while entangled states contain quantum
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correlations. What is meant by this? If ρ̂ is a separable state then the expectation value
of some observable Â on S(A⊗ B) reads

〈Â〉 = Tr{ρ̂Â} (2.39)

= Tr
{∑

k

λk(σ̂k ⊗ ω̂k)Â
}

(2.40)

= TrA{ρ̂AÂA}TrB{ρBÂB} (2.41)

= 〈ÂA〉〈ÂB〉, (2.42)

where we have defined the reduced observables

ÂA := TrB{Â}, ÂB := TrA{Â}, (2.43)

and the density matrices

ρ̂A :=
∑

k

λkσ̂k, ρ̂B :=
∑

k

λkω̂k. (2.44)

Thus for separable states the observable Â cannot be distinguished from the observable

Â′ = ÂA ⊗ ÂB. (2.45)

Observables which are of the above product form are called local observables. As we
can see by (2.42), for separable states the expectation value of any observable is just
a product of local expectation values. This is a classical type of correlation, and it can
be simulated with a classical ensemble. However, if the state ρ̂ is entangled, then the
expectation values can in general not be written in product form. Such a situation
is non-classical in that it cannot be simulated by a classical ensemble. An entangled
state contains information which is distributed over the subsystems, in other words the
total system shows non-local properties. This motivates the introduction of the term
non-locality in order to describe this typically quantum phenomenon.

Pure states

The system is said to be in a pure state if the density matrix is a projector, i.e.

ρ̂2 = ρ̂, (2.46)

otherwise the system is in a mixed state. Pure states are the extremal points in the
state space S(H), because for any ρ̂ ∈ S(H) we have in general

Tr{ρ̂2} ≤ 1, (2.47)

while for pure states we have Tr{ρ̂2} = 1. A pure state has the form

ρ̂ = |ψ〉〈ψ| (2.48)

for some |ψ〉 ∈ H with unit norm. If only pure states are considered, it suffices to
identify the state of the system with a unit ray in H, i.e.

|ψ〉 =̂ {eiφ|ψ〉 | φ ∈ R}. (2.49)
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For pure states the expectation value of an observable Â reads

〈Â〉 = Tr{|ψ〉〈ψ|Â} = 〈ψ|Â|ψ〉. (2.50)

To any density matrix ρ̂ ∈ S(H) there is a pure state |Ψ〉 in a larger Hilbert space H⊗K
such that

ρ̂ = TrK{|Ψ〉〈Ψ|}, (2.51)

where TrK{·} is the partial trace over the factor space K. The state |Ψ〉 is called a
purification of ρ̂. Note, however, that the purification is not unique, i.e. there a many
pure states in a larger Hilbert space whose partial trace yields the density matrix ρ̂. A
pure separable state is a product state,

|Ψ〉 = |ψH〉 ⊗ |ψK〉, (2.52)

while an entangled pure state cannot be written in product form, but rather in the
general form

|Ψ〉 =
∑
k,l

Ψ(k, l)|uk〉 ⊗ |el〉, (2.53)

where {|uk〉} and {|el〉} are orthonormal bases for H and K, respectively.

Interpretation of quantum mechanics

Even for pure states the uncertainty does not vanish for all observables. The Heisenberg
uncertainty relation [27] states that for any two observables Â and B̂ their uncertainties
obey

∆A∆B ≥ 1
2
|〈[Â, B̂]〉|. (2.54)

If [Â, B̂] 6= 0 then the two observables are called incompatible. In particular for position
and momentum we find that

[x̂, p̂] = i~, (2.55)

therefore the position and the momentum of a particle are not compatible. The un-
certainty principle has a major implication on the interpretation of quantum mechanics.
Because it is impossible to assign a precise value for two incompatible observables at one
instant in time they cannot both correspond to elements of reality. This rigorous conclu-
sion has firstly been drawn by Einstein, Podolsky and Rosen in 1935. In their landmark
paper [19] the authors claim that quantum mechanics cannot be considered a complete
theory, i.e. a theory where every element of the physical reality has a counterpart in the
physical theory. Since then a neverending debate is is going on whether or not there
is a realistic interpretation of quantum mechanics in the same way as there is one for
classical mechanics. We will not enter this debate, but I favorize the following approach
which offers in my view a satisfying solution to the controversies. In this approach, the
state of a system is merely a catalog of the observer’s knowledge about the system. A
measure for the observer’s ignorance about the system is given by the von-Neumann
entropy of the system is defined as

S(ρ̂) := −Tr{ρ̂ log2 ρ̂}. (2.56)
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Just like in the classical theory, the entropy does not represent an observable but rather
a feature of the system state, because S is not a self-adjoint operator on H. The entropy
is always non-negative,

S(ρ̂) ≥ 0, (2.57)

and for pure states it becomes zero, which means that a pure state represents complete
knowledge about the system. The mentioned “observer” does not need to be a human
being, in fact it does not matter who or what the observer is. It is only important
that the observer is a system which remains outside the description. The observer is the
subject and the described system is the object. Actual reality is the result of interactions
between subject and object. Any such interaction process represents an observation or
measurement and the results of these measurements define discrete events happening
in space and time. The physical theory then has to provide the probability that a given
pair of measurement events follow each other.

2.2 The Qubit

The elementary unit of classical information is the bit. The bit is the smallest possible
system that is able to store information: A system which can be in one of two states.
Conventionally, these two states are labelled by 0 and 1. Such a system acts as a
classical channel. Alice, the sender, encodes her message (“yes/no” or “black/white” or
“good/bad” or the like) by manipulating the state of the system and Bob, the receiver,
reads out the state of the system and decodes it back to the original message. (Bob has
to know the code that Alice uses, e.g. c(yes) = 1 and c(no) = 0.) If Alice wants to
transmit more sophisticated messages then she has to use a channel system which can
be in more than two states. If she has a couple of two-state systems at hand, then she
can combine them to a larger system. As we have introduced by definition (1.12), the
number of binary systems that Alice needs to encode her message is a measure for the
information content of the message.

The quantum analogue to a classical bit is a two-level quantum system, and it is called
the quantum bit or in short the qubit. Classical information is “quantized” by applying
the map

0 7→ |0〉, 1 7→ |1〉, (2.58)

where these two vectors have unit norm and are mututally orthogonal,

〈0|0〉 = 〈1|1〉 = 1, 〈0|1〉 = 0. (2.59)

The set B = {|0〉, |1〉} is called the computational basis. The qubit state is a unit vector
in the Hilbert space H spanned by the computational basis,

H = Span{|0〉, |1〉}, (2.60)

and is of the form

|ψ〉 = α|0〉+ β|1〉, (2.61)

where α, β are complex numbers fulfilling |α|2 + |β|2 = 1.
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A qubit can be implemented in many ways. Very common implementations are the spin-
1/2 particle and the polarized photon. In case of a spin-1/2 particle the computational
basis states are identified by the “spin-up” and “spin-down” states of the particle,

|0〉 ≡ | ↑〉, |1〉 ≡ | ↓〉, (2.62)

which represent the eigenstates of the spin component in a fixed direction. In case
of a polarized photon the basis states are identified with the horizontal and vertical
polarization states, respectively,

|0〉 ≡ |H〉, |1〉 ≡ |V 〉. (2.63)

A convenient mathematical representation of qubits is the tupel representation

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
, (2.64)

such that the qubit statecom (2.61) can be written as

|ψ〉 =
(
α
β

)
. (2.65)

However, the tupel representation is basis dependent in contrast to the abstract ket
representation.

2.2.1 The Pauli matrices

There is yet another and very elegant representation of the pure qubit state as a point
on the Bloch sphere. Generally, each point on a 3-dimensional sphere is uniquely defined
by the two angles ϕ, ϑ, where ϕ ∈ [0, 2π] and ϑ ∈ [0, π]. Now it is a matter of fact that
we can write down any normalized pure qubit state in the following fashion:

|ψ〉 = cos
ϑ

2
e−i ϕ

2 |0〉+ sin
ϑ

2
ei

ϕ
2 |1〉, (2.66)

where ϕ ∈ [0, 2π] and ϑ ∈ [0, π]. Thus each qubit state uniquely corresponds to a point
on a unit sphere which is called the Bloch sphere, and vice versa (see Fig. 2.1). Now a
point on the unit sphere is a unit vector in the 3-dimensional space. Any rotation of this
vector affects the two parameters ϑ and ϕ, so the qubit space is in fact a representation
space for 3-dimensional rotations. The rotation group R is the group of linear trans-
formations R on the 3-dimensional space V = R3 with RTR = 1 and with detR = 1,
i.e. is the special orthogonal group in 3 dimensions, and one writes R = SO(3). A
representation of the rotation group by orthogonal matrices in an n-dimensional vector
space would be denoted by SO(n). If the representation consists of unitary matrices on
an n-dimensional complex vector space then one writes SU(n). The rotation group is a
3-dimensional Lie group, which means that it can be parametrized by three continuous
parameters θ1, θ2, θ3. Considering these three parameters as components of a 3-vector
θ, the parametrization has the form

R(θ) = eiθ·J . (2.67)
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Figure 2.1: The Bloch sphere. Each pure state of a qubit can be represented by a point on the
Bloch sphere.

An infinitesimal rotation about the angle dθ is represented by the operator

R(dθ) = 1+ idθ · J . (2.68)

The angular vector θ can be considered as the rotation about a unit vector n by an
angle θ with

θ = θ · n. (2.69)

The components of the vector operator J are called the generators of the group, and
they are defined by

Jk :=
1
i

dR

dθk

∣∣∣
θ=0

. (2.70)

The generators of any representation of the rotation group fulfill the commutator relation

[Ji, Jj ] = iεijkJk, (2.71)

where [A,B] := AB−BA and where we follow the Einstein convention and perform the
sum over equal indices. As a consequence of (2.71), the generators form a Lie algebra,
i.e. a vector space of operators(!) whose commutator is still in the vector space. In
fact, one can construct a vector space W out of the basis B = {J1, J2, J3} and then
relation (2.71) guarantees that the commutator of two elements ofW is still inW. (This
vector space W of operators has nothing to do with the representation space V!) The
eigenvalues m of any of the components of J , e.g. J3, fulfill m = −j, . . . , j where the
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number j is called the spin and is determined by the dimension n of the representation
space through

2j + 1 = n. (2.72)

For example, the spin-1 representation is the usual 3-dimensional representation SO(3)
in the vector space V = R3. It can generally be shown that the spin j is either integer
or half-integer.
The case that we are particularly interested in is the spin-1

2 representation SU(2) of
the rotation group, because its representation space is a 2-dimensional complex Hilbert
space: the space of the qubit. The generators of the representation are given by the
components of the vector operator

Ĵ =
1
~
Ŝ =

1
2
σ̂, (2.73)

where the operators

σ̂1 =
(

0 1
1 0

)
, σ̂2 =

(
0 −i
i 0

)
, σ̂3 =

(
1 0
0 −1

)
(2.74)

are called the Pauli matrices. The rotation matrix R(θ) ∈ SO(3) is represented by the
unitary operator Û(θ) ∈ SU(2), where

Û(θ) = e
i
2
θ·σ̂. (2.75)

However, there is a peculiar property of these representations: While the rotation about
2π around any axis n yields the identity operation, R(2πn) = 1, this is not so for
the spin-1/2 representation. Instead we find that Û(2πn) = −1. The SU(2) is a
representation of SO(3) for infinitesimal rotations. If the angle θ = |θ| is too large
then both representations do not coincide. In the SU(2) it is the angle θ = 4π which
leads to identity, Û(4πn) = 1, so the domain of the parametrization of SU(2) includes
twice the domain of the parametrization of SO(3). In plain words: You have to turn an
electron twice around itself to reobtain its original state!
Now fix a normalized axis n and call it the quantization axis, then the operator

σ̂n := n · σ̂ (2.76)

represents the spin component along this axis. The eigenvalues of any such operator are
+1 or −1, so no matter what quantization axis we choose we will always find that the
spin points either up or down, i.e. along or against the chosen axis. The corresponding
eigenvectors are denoted by | ↑n〉 and | ↓n〉, so that

σ̂n| ↑n〉 = +| ↑n〉 (2.77)

σ̂n| ↓n〉 = −| ↑n〉. (2.78)

(Note that the spin operator is given by Ŝ = ~
2 σ̂, so that the eigenvalues of the physical

spin component Ŝn = ~
2 σ̂n are ±~

2 .) For any two normalized vectors a and b the
corresponding spin components fulfill the anticommutator relation

{σ̂a, σ̂b} = 2a · b, (2.79)
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where {Â, B̂} := ÂB̂ + B̂Â is the anticommutator of two operators Â and B̂. In
particular, the Pauli operators σ̂i obey

{σ̂i, σ̂l} = 2δij . (2.80)

The expectation value of the spin component σ̂b in the state | ↑a〉 is given by

〈↑a |σ̂b| ↑a〉 = a · b. (2.81)

For a large number of electrons the above expectation value is proportional to the number
of spin-polarized electrons passing a Stern-Gerlach apparatus directed along b. This is
also what one would expect classically when interpreting (2.81) as the (normalized)
intensity of a beam of electrons passing the apparatus. Only when there are very few
electrons, the true quantum nature of the electrons is revealed, because intensities appear
as probabilities then. The conditional probability to find an electron with a spin ↑b or
↓b if it has been prepared with spin ↑a is respectively given by

P (↑b | ↑a) = |〈↑b | ↑a〉|2 =
1
2
(1 + a · b) (2.82)

P (↓b | ↑a) = |〈↓b | ↑a〉|2 =
1
2
(1− a · b). (2.83)

The Pauli matrices have some other fancy properties which allow for interesting opera-
tions. Since a qubit is a carrier of quantum information, these operations correspond to
calculations and gates. Let us begin.

The Pauli matrices are Hermitian,

σ̂†i = σ̂i, (2.84)

so they are observables. They are also unitary,

σ̂−1
i = σ̂†i , (2.85)

so they are physically realizable transformations. Equations (2.84) and (2.85) imply that
the Pauli matrices are self-inverse,

σ̂2
i = 1. (2.86)

They have vanishing trace,
Tr{σ̂i} = 0, (2.87)

and they obey
Tr{σ̂iσ̂j} = 2δij . (2.88)

From (2.71) and (2.73) we can infer the commutator relation

[σ̂i, σ̂j ] = 2εijkσ̂k. (2.89)

so the generators {σ̂1, σ̂2, σ̂3} form the basis of a Lie algebra. Not only that, one can
show that the set

B = {1, σ̂1, σ̂2, σ̂3} (2.90)
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is a basis for the vector space containing all 2× 2-matrices! This means, whenever we
have an arbitrary 2×2-matrix Â we can decompose it into a linear combination of Pauli
matrices and unity operator,

Â =
3∑

µ=0

αµ σ̂µ, (2.91)

where σ̂0 := 1, and where the components are given by

αµ =
1
2
Tr{σ̂µÂ}. (2.92)

If we now consider a 2× 2 density matrix ρ̂ then it can be written as

ρ̂ =
1
2
(1+ λ · σ̂), (2.93)

where |λ| ≤ 1. So there is a one-to-one correspondence between a given density matrix
ρ̂ and a point λ within a unit ball in three dimensions. On the surface of this ball, where
|λ| = 1, the density matrix is a one-dimensional projector and thus represents a pure
state. The surface of a ball is a sphere, so we recover the Bloch sphere representation
of pure states! Consequently, any qubit state ρ̂ can be represented by a point in a three-
dimensional unit ball which is called the Bloch ball . In the center of the ball, where
λ = 0, the qubit state is completely mixed, while on the surface, where |λ| = 1, the
qubit state is pure. Using (2.92) we can calculate the components of the Bloch vector
λ for a given density matrix ρ̂ by

λi = Tr{σ̂iρ̂} = 〈σ̂i〉. (2.94)

Now we have collected some important properties and features of qubit states and Pauli
operators which are extensively used in quantum communication and computation.

2.3 Measurement

The most general operation that is allowed by the laws of quantum mechanics is a
completely positive map. This is a map E which fulfills the following conditions:

1. E is linear, i.e.

E(
∑

k

λkρ̂k) =
∑

k

λkE(ρ̂k), (2.95)

for any set of ρ̂k ∈ S(H) and λk ≥ 0,
∑

k λk = 1.

2. E is positive, i.e.

E(ρ̂) ≥ 0. (2.96)

3. For any finite-dimensional Hilbert space K the map E ⊗ 1K on S(H⊗K) is also
positive.
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We identify quantum operations with completely positive maps E that do not increase
the trace,

Tr{E(ρ̂)} ≤ 1. (2.97)

Following a theorem by Kraus [37], any quantum operation E can be cast into the form

E(ρ̂) =
∑

m∈M
Êmρ̂Ê

†
m, (2.98)

where M is a discrete index set. The Êm are called Kraus operators. If E is also
trace-preserving, i.e.

Tr{E(ρ̂)} = 1, (2.99)

then the Kraus operators fulfill ∑
m∈M

Ê†mÊm = 1. (2.100)

Trace-preserving quantum operations are all allowed operations that map quantum states
to quantum states: unitary operations, non-selective measurements, addition of uncor-
related systems, the dismissal of parts of a compound system, and the replacement of
the input state by some other state. In connection with trace-preserving quantum oper-
ations there is an important theorem by Stinespring which is not only of mathematical
interest but also has a deep physical impact.

Theorem 5 (Stinespring Dilation Theorem) Let E be a trace-preserving quantum
operation on a Hilbert space H. Then there is an ancilla space K of dimension
dimK ≤ (dimH)2 so that for any fixed |χ〉 ∈ K there is a unitary transformation
Û on H⊗K with

E(ρ̂) = TrK{Û(ρ̂⊗ |χ〉〈χ|)Û †}. (2.101)

This is an amazing theorem, because it shows that any allowed operation mapping
quantum states to quantum states can be modeled by a unitary operation on a larger
Hilbert space.
Another interesting fact about trace-preserving quantum operations is that they consti-
tute a positive operator-valued measure or POVM. Let E be a trace-preserving quantum
operation with Kraus operators Êm and define the operators

F̂m := Ê†mÊm, (2.102)

then the set
F = {F̂m} (2.103)

constitutes a POVM, because the F̂m are Hermitian, non-negative and they fulfill∑
m∈M

F̂m = 1. (2.104)

A POVM represents a generalized measurement where the outcome “m” occurs with
the probability

P (m) = Tr{Êmρ̂Ê
†
m} = Tr{ρ̂F̂m}. (2.105)
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The trace-preserving property (2.100) ensures that the probabilities sum up to unity. A
special case of a POVM is the projection-valued measure or in short PVM. Other syn-
onymes for a PVM are the von-Neumann measurement and the projective measurement.
In case of a PVM operation the Kraus operators are mutually orthogonal projectors, i.e.

Ê†m = Êm = Π̂m, Π̂mΠ̂n = δmnΠ̂m, (2.106)

so that the elements F̂m are identical to the Kraus operators itself, i.e. the projectors

F̂m = Êm = Π̂m. (2.107)

A special feature of projective measurements is that they are repeatable,

E2(ρ̂) =
∑
m,n

Π̂mΠ̂nρ̂Π̂nΠ̂m (2.108)

=
∑

m∈M
Π̂mρ̂Π̂m = E(ρ̂). (2.109)

This indicates that many real-world measurements are not projective. For example, the
detection of a photon on a silver screen destroys the photon, hence the measurement is
not repeatable and thus cannot be represented by a PVM measurement. If the Kraus
operators fulfill ∑

m

ÊmÊ
†
m = 1, (2.110)

then E is called a unital operation. A quantum operation which is both trace-preserving
and unital is called a doubly stochastic map. An important feature of doubly stochastic
maps is that they increase the von-Neumann entropy,

S(ρ̂) ≤ S(E(ρ̂)). (2.111)

The doubly stochastic maps represent the class of non-selective measurements, which are
measurements where the ensemble of individual output states is simply mixed together.
It is clear that such a procedure cannot reduce the von-Neumann entropy, because the
knowledge which is gained by the measurement is not used to manipulate the state in a
selective manner. The post-measurement state of a non-selective measurement is given
by

ρ̂′ = E(ρ̂) =
∑

m∈M
ρ̂′m, (2.112)

with the individual output states

ρ̂′m = ÊmρÊ
†
m. (2.113)

In a selective measurement, only a subset N ⊂ M of results is selected and the other
results are discarded, so the output state of a selective measurement has the form

ρ̂′ =
∑

m∈N
ρ̂′m =

∑
m∈N

ÊmρÊ
†
m, (2.114)



40 Quantum Information

where ∑
m∈N

Ê†mÊm ≤ 1. (2.115)

Generally, in a POVM measurement one does not care what happens with the state after
the measurement. However, if one speaks of a “POVM operation” with elements {F̂m}
then one means that the post-measurement state is given by

E(ρ̂) =
∑

m∈M

√
F̂mρ̂

√
F̂m, (2.116)

so the Kraus operators are

Êm =
√
F̂m. (2.117)

Because the F̂m are non-negative Hermitian operators, the above assignment is always
well-defined. Such POVM operation is doubly-stochastic, as one can easily verify, so
it does not decrease the von-Neumann entropy and represents a non-selective measure-
ment.

2.4 Quantum channels

Alice plans to send messages x ∈ X with apriori probabilities p(x). Instead sending the
messages themselves, she encodes them into quantum states by applying the map

x 7→ ρ̂x. (2.118)

After encoding, Alice sends the states through a quantum channel to Bob. The quantum
channel transforms each input state ρ̂x via a quantum operation E : S(H) → S(H) into
the output state

ρ̂′x = E(ρ̂x). (2.119)

The quantum channel is uniquely defined by this operation E . For an external person
who has no idea whatsoever about the encoding (2.118), the ensemble of quantum
states is indistinguishable from the mixed state

ρ̂ =
∑

x

p(x)ρ̂x. (2.120)

The von-Neumann entropy of ρ̂ is generally smaller or equal to the Shannon entropy of
the corresponding source message ensemble X = {(x, p(x))|x ∈ X},

S(ρ̂) ≤ H(X), (2.121)

where equality is reached only in case of mutually orthogonal quantum states, i.e. where

Tr{ρ̂xρ̂x′} = 0 for x 6= x′. (2.122)

As we will see later on, it is possible to compress an ensemble of pure quantum states
down to S(ρ̂) qubits per symbol, thus the von-Neumann entropy represents the quantum
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analogon to the Shannon entropy, namely a measure for the quantum resources needed
to encode the message.
Now Bob wants to find out which message x ∈ X Alice has sent. He performs a POVM
measurement on ρ̂ with elements {F̂y} which produces some classical output y ∈ Y. If
Alice sends x then Bob decodes y with the conditional probability

q(y|x) = Tr{ρ̂xF̂y}. (2.123)

As one can see the quantum channel acts as a classical noisy channel with transition
probabilities p(x → y) = q(y|x), so there is some intrinsic “quantum noise” which
prevents Bob from decoding the correct input message. Only if

Tr{ρ̂xF̂y} = δ(x, y) (2.124)

then the quantum channel acts as a noiseless classical channel. A necessary condition
for this is that the input states must be mutually orthogonal. The marginal probability
q(y) for decoding y regardless of what Alice has sent, is given by

q(y) =
∑

x

q(y|x)p(x) (2.125)

=
∑

x

Tr{ρ̂xF̂y}p(x) (2.126)

= Tr{ρ̂F̂y}, (2.127)

so that the measurement output is represented an ensemble Y = {(y, q(y))|y ∈ Y}.
After decoding y, Bob’s best guess is the message x with the highest aposteriori prob-
ability

p(x|y) =
q(y|x)p(x)

q(y)
(2.128)

=
Tr{ρ̂xF̂y}p(x)

Tr{ρ̂F̂y}
. (2.129)

Bob’s average information gain about X when he learns the value of Y is given by the
mutual information H(X : Y ) = H(X) − H(X|Y ). Bob’s task is to maximize this
mutual information by choosing an appropriate POVM {F̂y}. The maximum over all
POVMs is called the accessible information,

Acc(Σ) := max
{F̂y}

H(X :Y ). (2.130)

Holevo’s theorem [28, 29, 30, 24, 50] gives an upper bound to this value.

Theorem 6 (Holevo bound) The accessible information of an ensemble Σ =
{(ρ̂x, p(x))} of quantum states is bounded from above by

Acc(Σ) ≤ χ(Σ), (2.131)

where
χ(Σ) := S

( ∑
x

p(x)ρ̂x

)
−

∑
x

p(x)S(ρ̂x) (2.132)
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is the Holevo information of the ensemble Σ. The bound can be achieved asymptotically,
i.e.

1
N

Acc(Σ⊗N ) → χ(Σ) for N →∞, (2.133)

where Σ⊗N := {(ρ̂x1⊗· · ·⊗ ρ̂xN , p(x1) · · · p(xN )} is the ensemble of N quantum states
sequentially prepared from Σ.

In case of an ensemble of pure states, the Holevo information reduces to the von-
Neumann entropy of the corresponding density matrix ρ̂ =

∑
x p(x)ρ̂x. Therefore the

Holevo information can be regarded as a generalization of the von-Neumann entropy
as a measure of the classical information that can be extracted from an ensemble of
quantum states. Because

S
( ∑

x

p(x)ρ̂x

)
≥

∑
x

p(x)S(ρ̂x), (2.134)

the Holevo information is always non-negative.

2.4.1 Channel capacity

During the transmission there are two operations which are performed on the quantum
states: First, the channel performs the quantum operation E which in general introduces
noise. Second, the receiver performs a measurement operation M which corresponds
to a POVM measurement with some elements {F̂y}. In case of a noiseless quantum
channel the operation E is the identity operation, but even then it is not guaranteed
that all messages can be correctly decoded. In general we have

Acc(Σ) ≤ H(X), (2.135)

where
H(X) = −

∑
x

p(x) log2 p(x) (2.136)

is the Shannon entropy of the input ensemble. In particular, if the input states cannot
perfectly be distinguished from each other then the accessible information truly lies below
the Shannon entropy of the input ensemble. In case of a noisy channel the situation
even gets worse. The input ensemble Σ = {(ρ̂x, p(x))|x ∈ X} is affected by noise while
passing the channel, so that the output ensemble is given by

E(Σ) ≡ {(E(ρ̂x), p(x))|x ∈ X}. (2.137)

Bob now tries to decode Alice’s messages with the help of a suitable POVM {F̂y} so that
the mutual information H(X : Y ) is maximized. Because of Holevo’s theorem (2.131)
we know that this mutual information is bounded from above by the Holveo informa-
tion (2.132),

H(X :Y ) ≤ χ
(
E(Σ)

)
. (2.138)

The capacity of a classical channel is given by the maximum mutual information over all
input probabilities, C = maxpx H(X :Y ). For a quantum channel there is one more de-
gree of freedom, namely the choice of the input states ρ̂x. In total, Alice has to maximize
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over all ensembles Σ, thus the capacity of the quantum channel is C = maxΣH(X :Y ).
Because the maximal mutual information approaches the Holevo information asymptot-
ically, and because the channel capacity is intended to be an asymptotic quantity, the
capacity of the quantum channel reads

C = max
Σ

χ(E(Σ)). (2.139)

The capacity of a quantum channel [30, 24] is almost impossible to calculate in most
cases. Consequently, it is necessary to derive upper bounds restricted to a particular
scenario, which are computable and tight enough to be useful for practical purposes.

2.5 Quantum messages

In section 1.1 we have defined the notion of a channel in a quite general fashion. In
the quantum case, the source messages are particular states of a given quantum system.
These states have to be encoded into a quantum analog of code messages, so that they
can be transmitted to the receiver and reconstructed to give the original message. The
encoding of quantum states into quantum messages is accomplished by the quantum
code.
The classical code translates a source message into a code message, where the code
message is a sequence of symbols taken from a certain alphabet A. In the quantum
case these symbols are represented by states of a quantum system. Let us in the following
restrict the discussion to pure states. The set

B = {|ω1〉, . . . , |ωk〉} (2.140)

is a quantum analogue to a classical alphabet A of k symbols, and it is called the basis
alphabet. The symbols of the basis alphabet should be perfectly distinguishable, so the
corresponding quantum message states have to be mutually orthogonal,

〈ωi|ωj〉 = δij . (2.141)

In contrast to that, the messages that Alice composes from the basis alphabet by su-
perposition do not have to be mutual orthogonal. The basis alphabet spans a Hilbert
space

H = Span(B), (2.142)

which is called the symbol space. A symbol space with dimension dimH = |B| = k is a
k-ary space and a code that uses this space as a code space is a k-ary quantum code.
Quantum symbols are composed into basis messages by tensor multiplication,

|ωn〉 := |ω1〉 ⊗ · · · ⊗ |ωn〉. (2.143)

They form the set
Bn := {|ωn〉 | |ωi〉 ∈ B} (2.144)

and span the block space
H⊗n := Span(Bn), (2.145)
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giving

H⊗n =
n⊗

i=1

H = H⊗ · · · ⊗ H. (2.146)

The space H⊗n is the quantum analogue to the set An of classical block messages and
contains all superpositions of basis messages. The empty message, denoted by |x0〉 ≡
|�〉, forms the set B0 = {|�〉} and spans the one-dimensional space H⊗0 := Span(B0).
Elements of H⊗n for some n ∈ N are called block messages. The set of all basis
messages of finite length that can be composed from B is denoted by

B+ :=
∞⋃

n=0

Bn. (2.147)

Now the general message space H⊕ induced by a symbol space H can be defined by

H⊕ := Span(B+), (2.148)

giving

H⊕ =
∞⊕

n=0

H⊗n = H⊗0 ⊕H⊕H⊗2 ⊕ · · · . (2.149)

The space H⊕ is the quantum analogue to the set A+ of finite-length classical messages
given by (1.1). A quantum message is any element |x〉 ∈ H⊕. Any quantum message
which has the form

|xn〉 = |x1〉 ⊗ · · · ⊗ |xn〉, (2.150)

is a product message. All other messages are entangled messages. Because superpo-
sition and entanglement have no classical interpretation, quantum information is truly
different from classical information. H⊕ is a separable Hilbert space with the countable
basis B+. The space H⊕ is the Fock space known from many-particle theory. The
particles are symbols here which must be distinguishable, so there is no symmetrization
or antisymmetrization. The general message space H⊕ also contains superpositions of
messages of distinct length. For example, for a binary symbol space H the vector

1√
2
(|101〉+ |11100〉) (2.151)

is a valid quantum message in H⊕. Any block space H⊗n is a subspace of H⊕ and is
orthogonal to any other block space H⊗m with n 6= m. Elements with components of
distinct length are called variable-length messages (or indeterminate-length messages)
to distinguish them from block messages. Any subspace HC ⊂ H⊕ is called a message
space.

2.5.1 Statistical messages

The generalization to statistical ensembles is straightforward. Consider an ensemble
X = {p,X} of quantum messages |x〉 ∈ X ⊂ H⊕ occurring with probability p(x) >
0 ∀|x〉 ∈ X such that

∑
x∈X p(x) = 1. Then the density operator

σ̂ =
∑
x∈X

p(x)|x〉〈x|, (2.152)
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is the statistical quantum message corresponding to the ensemble X. The set of all
density operators over the message space H⊕ is denoted by S(H⊕). For a given density
operator σ̂ ∈ S(H⊕) there is in general a non-countable set of ensembles which give the
same density matrix σ̂. This means that there is more information in the ensemble than
in the corresponding density operator. As we will see, this additional apriori knowledge
is in fact needed to make lossless compression possible.

2.5.2 Length operator

Define the length operator in H⊕ measuring the length of a message as

L̂ :=
∞∑

n=0

n Π̂n, (2.153)

where Π̂n is the projector on the block space H⊗n ⊂ H⊕, given by

Π̂n =
∑

ωn∈Bn

|ωn〉〈ωn|. (2.154)

As L̂ is a quantum observable, the length of a message |x〉 ∈ H⊕ is generally not sharply
defined. Rather, the measurement of L̂ generally disturbs the message by projecting it on
a block space of the corresponding length. The expected length of a message |x〉 ∈ H⊕

is given by

L(x) := 〈x|L̂|x〉. (2.155)

However, in H⊕ there are also messages whose expected length is infinite. Classical
analoga are probability distributions with non-existing moments, e.g. the Lorentz distri-
bution. Block messages are eigenvectors of L̂, that is, L̂|x〉 = n |x〉 for all |x〉 ∈ H⊗n.

The expected length of an ensemble X or of the corresponding statistical message
σ̂ ∈ S(H⊕) is defined as

L(X) = L(σ̂) := Tr{σ̂ L̂} =
∑
x∈X

p(x)L(x). (2.156)

2.5.3 Base length

The expected length of a quantum message |x〉, given by (2.155), will in general not
be the outcome of a length measurement. Every length measurement results in one of
the length eigenvalues supported by |x〉 and generally disturbs the message. If there is a
maximum value resulting from a length measurement of a state |x〉, namely the length
of the longest component of |x〉, then let us call it the base length of |x〉, defined as

L(x) := max{n ∈ N | 〈x|Π̂n|x〉 > 0}. (2.157)

For example, the quantum message

|x〉 =
1√
2
(|abra〉+ |cadabra〉) (2.158)
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1p2(j01i + j1i)
1p3(j11i + j10i + j0i)j01001i
1p2(j101i + j111i) j0i

j1i

Figure 2.2: A quantum code is a linear isometric map from a source space of quantum ob-
jects into a code space of codewords composed from a quantum alphabet. Superpositions of
source objects are encoded into superpositions of codewords. An ensemble of source objects is
mapped to an ensemble of codewords. For a variable-length quantum code, the length of the
codewords is allowed to vary. Superpositions of codewords of distinct length lead to codewords
of indeterminate length. The base length of a codeword is defined as the length of the longest
component.

has base length 7. Since the base length of a state is the size of its longest component,
we have

L(x) ≥ L(x). (2.159)

It is important to note that the base length is not an observable. It is only available if
the message |x〉 is apriorily known.

2.5.4 Quantum code

Now we can precisely define a k-ary quantum code to be a linear map c : V → H⊕, where
V is a Hilbert space and H⊕ is the general message space induced by a symbol space
H of dimension k. The image of V under c is the code space C = c(V) (see Fig. 2.2).
Being a quantum analogue to the codebook, C is the space of valid codewords. The
code c is uniquely specified by the transformation rule

|ω〉 c7−→ |γ〉, (2.160)

where |ω〉 are elements of a fixed orthonormal basis BV of V and |γ〉 = |c(ω)〉 are
elements of an orthonormal basis BC of C. A lossless quantum code is a linear isometric
map c : V → H⊕, i.e. 〈ω|ω′〉 = 〈c(ω)|c(ω′)〉, this implies that |c(ω)〉 6= |c(ω′)〉 for all
|ω〉 6= |ω′〉 in V, so c is indeed a lossless code with an inverse c−1. A quantum code c
can be represented by the operator

Ĉ :=
∑

ω∈BV

|c(ω)〉〈ω|, (2.161)
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called the encoder of c. If c is lossless, there is an inverse operator

D̂ := Ĉ−1 =
∑

ω∈BV

|ω〉〈c(ω)| =
∑
γ∈BC

|c−1(γ)〉〈γ|, (2.162)

called the decoder . If c is an error correcting code (which is also lossless) then before
decoding the message via D̂ one performs an error syndrom measurement to see if an
errror has modified the code basis states |c(ω)〉. If so, one recovers the code states
by applying an adequate unitary operation and then applies D̂ to decode the original
message. If c is a lossy code then the decoder is constructed in such a way that the
decoded message is at least similiar to the original one, or give an error message. Error
correcting and lossy codes are not our task here, so let us proceed with simple lossless
quantum codes where D̂ = Ĉ−1.

In practice, the source space V and the code space C are often subspaces of one and
the same physical space R. Since Ĉ is an isometric operator between V and C, there is
a (non-unique) unitary extension ÛC on R with

ÛC |x〉 = Ĉ|x〉, ∀|x〉 ∈ V ⊂ R, (2.163)

Û †C |y〉 = Ĉ−1|y〉, ∀|y〉 ∈ C ⊂ R. (2.164)

However, using Ĉ and distinguishing between V and C is more convenient and more
general. Codes with C ⊂ H⊗n for some n ∈ N are called block codes, otherwise
variable-length codes.

2.6 Realizing variable-length messages

Variable-length messages could in principle directly be realized by a quantum system
whose particle number is not conserved, for instance an electromagnetic field. Each
photon may carry symbol information by its field mode, while the number of photons
may represent the length of the message. The photons can be ordered either using
their spacetime position (e.g. single photons running through a wire) or some internal
state with many degrees of freedom (e.g. a photon with frequency ω2 can be defined
to “follow” a photon with frequency ω1 < ω2). The Hilbert space representing such a
system of distinguishable particles with non-conserved particle number is the message
space H⊕. In case we have only a system at hand, where the number of particles is
conserved, we can also realize variable-length messages by embedding them into block
spaces.

It is a good idea to distinguish between the message space, which is a purely abstract
space, from its physical realization. Let us call the physical realization of a message
space Hop the operational space H̃op. Between Hop and H̃op, there is an isometric
map, so dimHop = dim H̃op. This is expressed by Hop

∼= H̃op. The operational space
H̃op is the space of physical states of a system representing valid codewords of Hop.
Often the operational space is a subspace of the total space of all physical states of the
system. Denoting the total physical space by R we have

Hop
∼= H̃op ⊂ R. (2.165)
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One might object that superselection rules which forbid the superposition of distinct
particle numbers also forbid the realization of variable-length messages. However, there
are two crucial counterarguments. First, these superselection rules only apply to massive
particles. In case of massless particles like photons the superposition of distinct particle
numbers is rather the generic case than a bizarre exception (e.g. coherent states).
Second, we actually do not deal with particles here but with letters. For example, a
letter could be represented by a particular excited state of the Hydrogen atom and the
empty letter is represented by the ground state. We then represent the variable-length
message

1√
2
(|0〉+ |10〉) (2.166)

by the physical state
1√
2
(|0gg〉+ |10g〉), (2.167)

where |g〉 indicates the ground state. The entire message is now encoded into the joint
state of three distinguishable atoms, so that the maximal length of the message is three.
In the next section we will get more into detail with the possible realization of message
spaces.

2.6.1 Bounded message spaces

The general message space H⊕ is the “mother” of all message spaces induced by the
symbol space H. It contains just every quantum message that can be composed using
symbols from H and the laws of quantum mechanics. However, it is an abstract space,
i.e. independent from a particular physical implementation. It would be good to know
if such a space can also physically be realized. It is clear that if one has a finite system
one can only realize a finite dimensional subspace of the general message space, whose
dimension is infinite. So let us start with the physical realization of the r-bounded
message space

H⊕r :=
r⊕

n=0

H⊗n, (2.168)

containing all superpositions of messages of maximal length r.

Say we have a physical space R = D⊗s representing a register consisting of s systems
with dimD = k. Each subspace D represents one quantum digit in the register. In the
case k = 2 the quantum digits are quantum bits, in short “qubits”. The physical space
R represents the space of all physical states of the register, while the message space
H⊕r represents the space of valid codewords that can be held by the register and it is
isomorphic to a subspace H̃⊕r of the physical space R. Let dimH = k, then one must
choose s such that

dim(H⊕r) ≤ dim(D⊗s) (2.169)

⇒
r∑

n=0

kn =
kr+1 − 1
k − 1

≤ ks (2.170)

⇒ s ≥ r + 1. (2.171)
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start digit

redundant digits significant digits

register

0 0 00 0 0 371

Figure 2.3: Realizing a general variable-length message.

Thus one needs a register of at least (r + 1) digits to realize the message space H⊕r.
Choose the smallest possible register space R = D⊗(r+1). Since at most r digits are
carrying information, one digit can be used to indicate either the beginning or the end of
the message. Now we can conveniently use k-ary representations of natural numbers as
codewords. Each natural number i has a unique k-ary representation Zk(i). For instance,
Z2(3) = 11 and Z16(243) = E3. All k-ary representations have a neutral prefix “0”
that can precede the representation without changing its value, e.g. 000011 ∼= 11. For
a natural number n > 0, define Zn

k (i) as the n-extended k-ary representation of i by

Zn
k (i) := 0 · · · 0Zk(i)︸ ︷︷ ︸

n

, 0 ≤ i ≤ kr − 1. (2.172)

For example, Z6
2 (3) = 000011 and Z6

16(243) = 0000E3. Let us define that the mes-
sage starts after the first appearance of “1”, e.g. 000102540 ∼= 02540. Now define
orthonormal vectors

|eni 〉 := | 0 · · · 0︸ ︷︷ ︸
r−n

1Zn
k (i)〉 ∈ R (2.173)

where n > 0 and 0 ≤ i ≤ kn − 1. The n digits of Zn
k (i) are called significant digits.

The empty message corresponds to the unit vector

|�〉 := |e00〉 := |0 · · · 01〉. (2.174)

Obviously, |�〉 has no significant digits. Next, define orthonormal basis sets

B̃n :=
{
|en0 〉, . . . , |enkn−1〉}, 0 ≤ n ≤ r, (2.175)

that span the operational block spaces

H̃⊗n = Span(B̃n). (2.176)

Note that H̃⊗n is truly different from H⊗n, because H̃⊗n has dimension kr+1, while
H̃⊗n has dimension kn. Next, define an orthonormal basis

B̃+ :=
r⋃

n=0

B̃n, (2.177)
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and construct the operational space H̃⊕r ⊂ R by

H̃⊕r := Span(B̃+). (2.178)

Altogether, the physical space R = D⊗(r+1) is the space of all physical states of the
register, while the operational space H̃⊕r ⊂ R is the space of those register states that
represent valid codewords, and it is isomorphic to the abstract message space H⊕r.
A message is represented by the vector

|x〉 =
r∑

n=0

kn−1∑
i=0

xn,i |eni 〉 (2.179)

with
∑r

n=0

∑kn−1
i=0 |xn,i|2 = 1. The length operator introduced in section 2.5.2 is here

of the form

L̂ :=
r∑

n=0

n Π̂n, (2.180)

because there are at most r digits to constitute a message. Now we need to know how
the projectors Π̂n are constructed in the operational space H̃⊕r. For a register state
containing a message of sharply defined length, the length eigenvalue n is given by the
number of significant digits in that register,

L̂ |eni 〉 := n |eni 〉, (2.181)

for 0 ≤ i ≤ kn − 1. Each projector is then defined by

Π̂n :=
kn−1∑
i=0

|eni 〉〈eni | (2.182)

and projects onto the space H⊗n ⊂ R. Note that the physical length of each message
is always given by the fixed size (r + 1) of the register. Only the significant length of a
message, i.e. the number of digits that constitute a message contained in the register,
is in general not sharply defined. Note further that the particular form of the length
operator depends on the realization of the message space.
In the limit of large r we have lim

r→∞
H⊕r = H⊕, but that space can no longer be

embedded into a physical space R = D⊗∞ := lim
n→∞

D⊗n, since the latter is no separable

Hilbert space anymore. However, we can think of r as very large, such that working in
H⊕ just means working with a quantum computer having enough memory.

2.6.2 Realizing more message spaces

A code is a map c : V → H⊕ from source states in V to codewords in H⊕. The space
C = c(V) of all codewords is the code space and as a subspace of the general message
space H⊕ it is just a special message space. In order to implement a particular code c,
it is in practice sufficient to realize only the corresponding code space C by a physical
system. Let us realize some important code spaces now. However, we will not discuss
the class of error-correcting code spaces here, since this would go beyond the scope of
this book.
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Block spaces

An important message space is the block space H⊗n, that contains messages of fixed
length n. Block spaces are the message spaces of standard quantum information theory.
They can directly be realized by a register R = H⊗n of n digits, e.g. n two-level systems
representing one qubit each.

Prefix spaces

Another interesting message space is the space of prefix codewords of maximal length
r. Such a space contains only superpositions of prefix codewords. A set of codewords
is prefix (or prefix-free) if no codeword is the prefix of another codeword. For example,
the set P3 = {0, 10, 110, 111} is a set of binary prefix codewords of maximal length 3.
Prefix codewords have one significant advantage:

• Prefix codewords are instantaneous, that is, sequences of prefix codewords do not
need a word separator. The separator can be added while reading the sequence
from left to right. A sequence from P3 can be separated like

110111010110 7→ 110, 111, 0, 10, 110. (2.183)

However, there is also a drawback:

• Prefix codewords are in general not as short as possible.

This is a consequence of the fact that there are in general less prefix codewords than
possible codewords. For example, if we want to encode 4 different objects, we can use
the prefix set P3 above with maximal length 3. If we renounce the prefix property we
can use the set {0, 1, 01, 10} with maximal length 2.

A prefix space Pr of maximal length r is given by the linear span of prefix code-
words of maximal length r. For the set P3, the corresponding prefix space is P3 =
Span{|0〉, |10〉, |110〉, |111〉}. The prefix space Pr ⊂ H⊕r can physically be realized by
a subspace P̃r of the register space R = D⊗r spanned by the prefix codewords which
have been extended by zeroes at the end to fit them into the register. For example,
P̃3 = Span{|000〉, |100〉, |110〉, |111〉} ⊂ D⊗3 is a physical realization of the prefix space
P3. The length operator measures the significant length of the codewords, given by the
length of the corresponding prefix codewords.

Schumacher and Westmoreland [51] as well as Braunstein et al. [13] used prefix spaces
for their implementation of variable-length quantum coding in form of a quantum ana-
logue of the Huffman code. However, we will show later on that the significant advan-
tage of prefix codewords in fact vanishes in the quantum case, whereas the disadvantage
remains.

Neutral-prefix space

A specific code space will be of interest, namely the space of neutral-prefix codewords,
which we define as follows. The k-ary representation of a natural number i is denoted by
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Figure 2.4: Realizing variable-length messages by neutral-prefix codewords.

Zk(i) (see section 2.6.1). The empty message � is represented by Zk(0) = �. Define
an orthonormal basis

Br := {|Zk(0)〉, . . . , |Zk(kr − 1)〉} (2.184)

of variable-length messages of maximal length r. The length of each basis message
|Zk(i)〉 is given by

|Zk(i)| = dlogk(i+ 1)e, (2.185)

where dxe denotes the smallest integer ≥ x. These basis messages span the r-bounded
neutral-prefix space

Nr := Span(Br). (2.186)

Note that Nr is not equal to the r-bounded message space H⊕r as one can see by
comparing the dimension dimNr = kr with dimH⊕r = kr+1−1

k−1 . Nr is smaller than
H⊕r, because not all messages of H⊕r are contained in Nr. For example, the message
|01〉 is in H⊕r but not in Nr, hence we have

Nr ⊂ H⊕r. (2.187)

Now we want to find a physical realization of Nr. This turns out to be quite easy (see
Fig. 2.4). As already noted in section 2.6.1, the k-ary representation Zk(i) of any natural
number i can be extended by leading zeroes to the r-extended k-ary representation
Zr

k(i) := 0 · · · 0Zk(i). Take a register R = D⊗r of r digits with D = Ck. Then the set

BR := {|Zr
k(0)〉, . . . , |Zr

k(kr − 1)〉} (2.188)

is an orthonormal basis for the register space R. At the same time it can be regarded as
an orthonormal basis for the operational space Ñr representing the neutral-prefix space
Nr. While the physical length of each codeword is constantly r, the significant length
is measured by the length operator

L̂ :=
r∑

n=0

n Π̂n, (2.189)

with mutually orthogonal projectors

Π̂n :=
∑

i: |Zk(i)|=n

|Zr
k(i)〉〈Zr

k(i)|. (2.190)

Note that the so-defined length operator looks different from the one defined in sec-
tion 2.6.1. While L̂ is always of the same form (2.180), the projectors Π̂n are different
because the operational spaces are different.
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The empty message can be defined by

|�〉 := |Zr
k(0)〉 = |0 · · · 0〉. (2.191)

A code message space in Ñr is given by

|x〉 =
kr−1∑
i=0

xi |Zr
k(i)〉. (2.192)

We have realized the neutral-prefix space Nr by exhausting the entire register space R,
so the quantum resources are optimally used. In other words:

• All messages in Nr are as short as possible.

Remember that the physical realization of H⊕r requires one additional digit to represent
the beginning or the end of a message. This digit does not contain any message infor-
mation, it is sort of wasted. For quantum coding, the additional digit may really count,
since it would have to be added each time a codeword is stored or transmitted! Also
the prefix space considered in section 2.6.2 contains messages which are not as short as
possible. One can encode a space V of dimension dimV = 4 by a prefix space spanned
by {|000〉, |100〉, |110〉, |111〉} with corresponding lengths {1, 2, 3, 3}, but then we need
a register of 3 qubits. In contrast to that, V can be encoded by a neutral-prefix space
spanned by the basis {|00〉, |01〉, |10〉, |11〉} with corresponding lengths {0, 1, 2, 2}, and
we need a register of only 2 qubits. In the operational space Ñr, the basis messages
reveal their length information by simply discarding leading zeroes. That way, not all
variable-length messages can be realized, but we save 1 register digit, so Nr is a good
candidate for variable-length quantum coding.
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Chapter 3

Concepts of Quantum Data
Compression

3.1 Information content of a quantum message

In section 1.4 we have defined compression as reducing the size of the message ensemble,
i.e. reducing the effort of communication. The amount of compression is measured by
the effectivity of the code (1.20), i.e. the ratio of uncompressed size to compressed size,

ηc =
I0(M)
Ic(M)

. (3.1)

The size Ic(M) (which we have also called the code information content) of the message
ensemble M is the average over the size of the individual messages m, which is measured
by (1.12),

Ic(m) = log2 |Ac| · Lc(m), (3.2)

where Ac is the code alphabet and Lc(m) is the length of the encoded message m. The
task is now to translate these concepts to the quantum case. The raw information (1.19)
of an ensembleM is I0(M) = log2 |M| because we need |M| distinct symbols to encode
each element of the message set M by a raw code. Interpreting M as an orthonormal
basis for a Hilbert space V, the raw information of V is also log2 |M|, because we
still need |M| distinguishable symbols to represent each element of the space V. Since
|M| = dimV, we define the quantum raw information content of a space V as

I0(V) := log2(dimV). (3.3)

So the quantum raw information I0 corresponding to a space V equals the fixed number
of qubits needed to represent all states in V.
The amount of qubits that is occupied by a given quantum message |x〉 ∈ H⊕ is
measured by the information operator

Î := log2 k · L̂, (3.4)

where L̂ is the length operator in H⊕. For a given k-ary code c : V → H⊕ represented
by an encoder Ĉ, the code information operator can be defined as

Îc := log2 k · L̂c, (3.5)

57
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where L̂c := Ĉ−1 L̂ Ĉ is the length operator measuring the length of the codeword for
a source vector in V. If the code is based on a qubit alphabet, Îc measures the number
of qubits forming the code message, hence the measuring unit of Îc is “1 qubit”.
In short, the effective quantum information operator is defined in an arbitrary Hilbert
space V and depends on a quantum code c : V → H⊕, while the direct information
operator is defined in a message space H⊕ without referring to a quantum code. For a
given code, the relation between both operators is

Îc = C−1 Î C. (3.6)

Now we want to compress a codeword by removing redundant quantum digits. The
number of quantum digits carrying information is given by the base length of the code-
word. All other digits are redundant and can be removed without loss of information.
This motivates the definition of the effective quantum information of a state |x〉 ∈ V
respecting a code c by

Ic(x) := log2 k · Lc(x), (3.7)

where Lc(x) = L(c(x)) is the base length of the codeword for |x〉. Ic(x) represents
the number of qubits needed to describe the state |x〉 by the code c. This value must
be distinguished from the expected number of qubits Ic(x) = 〈x|Îc|x〉 that is found by
performing a length measurement on the codeword for |x〉. In the classical case, the
difference vanishes.
Now suppose we want to encode an ensemble X = {p,X} of states |x〉 ∈ X that
span the source space V. Each individual message |x〉 can be compressed to Ic(x)
qubits, so the entire ensemble X will on average be compressed to the effective quantum
information

Ic(X) := log2 k
∑
x∈X

p(x)Lc(x). (3.8)

In analogy to our classical definition (1.20), we define the effectivity of a quantum code
by

ηc(X) :=
I0(X)
Ic(V)

. (3.9)

A code c is compressive on the ensemble X if and only if

ηc(X) > 1 i.e. Ic(X) < I0(V). (3.10)

3.2 Schumacher compression

The compression scheme raised by Schumacher [49, 34] is the quantum analog to Shan-
non’s source coding theorem. Let us now get into the details of Schumacher compression
in order to understand the basic principles of quantum compression. These experiences
will be helpful when we will later be looking out for a lossless compression scheme.

Alice composes a random message x ≡ x1 · · ·xN of length N from the message set
M = A× · · · × A by choosing N letters independently from the same letter ensemble.
The resulting quantum message has the form

|x〉 ≡ |x1〉 ⊗ · · · ⊗ |xN 〉, (3.11)
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where each letter |xn〉 is an element of the quantum source alphabet

QA = {|x〉|x ∈ A} (3.12)

and the entire message is a vector from the Hilbert space

HM := H⊗N
A ≡ HA ⊗ · · · ⊗ HA. (3.13)

Alice chooses each letter |x〉 ∈ QA with apriori probability p(x), so the ensemble of
letters is represented by X = {QA, p}, which corresponds to the letter matrix

ρ̂ =
∑
x∈A

p(x) |x〉〈x|. (3.14)

Each letter is chosen independently, so the message |x〉 appears with probability p(x) =
p(x1) · · · p(xN ), and the total message ensemble can be represented by the message
matrix

ρ̂ = ρ̂⊗N =
∑

x∈M
p(x) |x〉〈x|. (3.15)

Before sending her block message to Bob, Alice has to convert the message into a
sequence of qubits, because the channel to Bob only accepts qubits. This conversion
should be invertible, so Alice has to build an encoder Ĉ that unitarily maps the source
space HM to a code space HC of qubits,

Ĉ : HM → HC . (3.16)

In order for Ĉ to be unitary, the dimension of HC must be equal to the dimension of
the source space HM . The dimension of the alphabet space is at most K = |QA|, but
the quantum letters |ak〉 ∈ QA do not have to be mututally orthogonal, yet they do not
even have to be linearly independent, so the dimension of HA can in fact be smaller
than the number of alphabet letters, which gives

log(dimHM ) = N log(dimHA) ≤ N logK, (3.17)

where logs are binary, here and in the following. A message |x〉 is encoded into the
binary message |c(x)〉 by applying the encoder Ĉ,

|c(x)〉 := Ĉ|x〉. (3.18)

Note that while |x〉 is by construction a product state, the code state |c(x)〉 can be
highly entangled. Let the alphabet space HA have dimension L, then in order to encode
every message in HM we need a qubit space of dimension

dimHC = dimHM = LN , (3.19)

where we assume that L and N are chosen such that the above number is a power of
two. In other words, we need N logL qubits to encode each message in HM with perfect
fidelity. The decoding procedure is represented by the inverse operator D̂ : HC → HM ,

D̂ := Ĉ†. (3.20)
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Since the use of a quantum channel is very expensive, we want to save qubits for the
transmission. Let us look for an encoder Ĉ that is restricted to a proper subspace
Λ ⊂ HM with a dimension significantly smaller than LN , such that we still achieve
asymptotically faithful decoding. First, we perform a diagonalization of the letter matrix,
resulting in

ρ̂ =
L∑

l=1

ql |λl〉〈λl|. (3.21)

The number L of ρ̂-eigenstates coincides with the dimension of the alphabet subspace
HA. We have

ρ̂ log ρ̂ =
L∑

l=1

ql log ql |λl〉〈λl|, (3.22)

such that

Tr{ρ̂ log ρ̂} =
L∑

l=1

ql log ql = H(Y ), (3.23)

where Y denotes the ensemble of ρ̂-eigenstates. The von-Neumann entropy of ρ̂ equals
the Shannon entropy of the ensemble of ρ̂-eigenstates,

S(ρ̂) = H(Y ). (3.24)

One can show that the von-Neumann entropy is bounded from above by the Shannon
entropy of the letter ensemble X,

S(ρ̂) ≤ H(X), (3.25)

where equality holds in the case of mutual orthogonal letter states.
Quantum mechanics tells us that the scenario where Alice sends the ensemble Y cannot
by any experiment be distinguished from the actual scenario where Alice sends the
ensemble X. However, sending the ensemble Y corresponds to a classical situation.
Consider the sequence |y〉 ≡ |y1 · · · yN 〉 of basis states |yn〉 ∈ BA, which appear with
probability q(y) = q(y1) · · · q(yN ). Just like in Shannon’s noiseless coding theorem we
introduce a typical subset T of messages y appearing with probability

2−N(S+δ) ≤ q(y) ≤ 2−N(S−δ), (3.26)

where we have used the fact that H(Y ) = S(ρ̂) ≡ S. Then we define the typical
subspace Λ ⊂ HA as the space spanned by the typical messages,

Λ := Span{|y〉 | y ∈ T}. (3.27)

Exploiting Shannon’s theorem we know that for any fixed ε, δ > 0 there is a big enough
N such that

PΛ ≥ 1− ε, (3.28)

where PΛ is the total probability of all members of T ,

PΛ =
∑
y∈T

q(y). (3.29)
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Since the typical subspace Λ is spanned by the typical messages |y〉 where y ∈ T , the
dimension of Λ is given by the size of T , so Shannon’s theorem implies that

(1− ε)2N(S−δ) ≤ dim Λ ≤ 2N(S+δ). (3.30)

In the asymptotic limit N →∞, the dimension of the subspace approaches

dim Λ → 2NS . (3.31)

Because we have

S(ρ̂) =
L∑

l=1

ql log ql ≤ logL, (3.32)

the dimension of Λ is smaller than or equal to the dimension of the space of all messages,

dim Λ = 2NS(ρ̂) ≤ 2N log L = dimHM . (3.33)

In practice, except for the case of uniformly distributed letters, the typical subspace will
have a dramatically smaller dimension (for large N). Hence we can save resources by
encoding only the component of |x〉 that lies in the typical subspace Λ. To this aim we
need the projector onto the typical subspace, which is given by

Π̂Λ =
∑
y∈T

|y〉〈y|. (3.34)

Now we restrict the encoder to the typical subspace, Ĉ : Λ → HC , where it shall be
a unitary operator. Schumacher compression goes as follows. First, Alice projects her
source message |x〉 onto the typical subspace Λ. With probability

PΛ(x) := 〈x|Π̂Λ|x〉 = Tr{|x〉〈x|Π̂Λ}. (3.35)

such projection will be successful and results in the state

|φ(x)〉 :=
1√
PΛ(x)

Π̂Λ|x〉, (3.36)

The average probability of a successful projection thus reads

〈PΛ(X)〉 =
∑

x∈M
p(x)PΛ(x) (3.37)

=
∑

x∈M
p(x)Tr{|x〉〈x|Π̂Λ} (3.38)

= Tr
{ ∑

x∈M
p(x)|x〉〈x|Π̂Λ

}
(3.39)

= Tr{ρ̂ Π̂Λ}, (3.40)

that is,

〈PΛ(X)〉 = Tr{ρ̂Π̂Λ}. (3.41)
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Let us proceed,

Tr{ρ̂Π̂Λ} =
∑
y∈T

〈y|ρ̂|y〉 (3.42)

=
∑
y∈T

q(y) ≡ PΛ ≥ 1− ε, (3.43)

where in the last step we used Shannon’s theorem. We arrive at

〈PΛ(X)〉 = PΛ ≥ 1− ε, (3.44)

hence the projection will be 100% successful in the asymptotic limit of infinitely long
messages. After projection, Alice can encode the resulting state |φ(x)〉 by Ĉ and send
it to Bob, who then applies the inverse operation Ĉ† to obtain the state |φ(x)〉. If
the overlap of |φ(x)〉 with the original message is big enough, it was an approximately
faithful transmission. If the projection was not successful, Alice prepares some garbage
state |φ0〉 ∈ Λ, encodes it by Ĉ and sends it to Bob. In this case, the overlap with the
orininal message |x〉 is hopefully very small. To put this more precisely, we describe the
statistical ensemble of successful and unsuccessful projections by a density matrix. The
probability that the projection is not successful reads

1− PΛ(x) = 〈x|(1− Π̂Λ)|x〉. (3.45)

So after the projection procedure the message will be in the mixed state

ρ̂x = PΛ(x)|φ(x)〉〈φ(x)|+ (1− PΛ(x))|φ0〉φ0| (3.46)

= Π̂Λ|x〉〈x|Π̂Λ + (1− PΛ(x))|φ0〉〈φ0|. (3.47)

The subsequently performed encoding procedure by Ĉ maps the state ρ̂x to the qubit
state Ĉρ̂xĈ

†, which is then send to Bob through the quantum channel. After receiving
the code message, Bob applies the decoder D̂ = Ĉ† to it and since Ĉ is unitary, he
recovers the state ρ̂x. Originally, the message was given by the pure state |x〉〈x|. The
fidelity between original and decoded message is given by

F (x) = 〈x|ρ̂x|x〉 (3.48)

= 〈x|Π̂Λ|x〉〈x|Π̂Λ|x〉+ rx (3.49)

= P 2
Λ(x) + rx (3.50)

≥ P 2
Λ ≥ 2PΛ(x)− 1, (3.51)

where we used
rx := 〈x|

{
(1− PΛ(x))|φ0〉〈φ0|

}
|x〉 ≥ 0 (3.52)

together with the inequality x2 ≥ 2x − 1, which holds for all real numbers x. So the
average fidelity for the ensemble x of source messages reads

F =
∑

x∈M
p(x)F (x) (3.53)

≥
∑

x∈M
p(x)

(
2PΛ(x)− 1

)
(3.54)

= 2 Tr{ρ̂Π̂Λ} − 1 ≥ 1− 2ε, (3.55)
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where we used (3.43). We arrive at the important conclusion: The average fidelity of
the decoded states with the original messages tends to unity in the limit of infinitely long
messages. States that do not survive the projection will be all encoded by the same junk
state, which thus cannot be faithfully decoded to give the original message. Happily, the
probability of such erroneous decoding vanishes in the limit of infinitely long messages.
Since the dimension of the typical space approaches d → 2NS , we need IN = NS(ρ̂)
qubits to encode each typical message, hence per source letter we need

I = S(ρ̂) (3.56)

qubits in the limit of infinitely long messages, which represents a significant compression
in most practical cases. Now let us investigate if we can achieve a compression below
S(ρ̂) qubits. Just like in the classical case, we fix some ε′ > 0 and project the source
message on a “subtypical subspace” Λ′ ⊂ Λ whose dimension is

dim Λ′ ≤ (1− ε)2N(S−δ−ε′) < 2N(H−δ−ε′). (3.57)

Let the space Λ′ be spanned by the messages in a “subtypical set” T ′ ⊂ T ,

Λ′ := Span{|y〉 | y ∈ T ′}, (3.58)

so the dimension of Λ′ equals the size of T ′,

dim Λ′ = |T ′|. (3.59)

The probability that a given message |x〉 is successfully projected onto Λ′ reads

PΛ′(x) = 〈x|Π̂Λ′ |x〉 (3.60)

= Tr{|x〉〈x|Π̂Λ′}, (3.61)

and the projected state is then given by

|φ′(x)〉 :=
1√

PΛ′(x)
Π̂Λ′ |x〉. (3.62)

The average probability that a message is successfully projected onto Λ′ yields

PΛ′ =
∑

x∈M
p(x)PΛ′(x) (3.63)

=
∑

x∈M
p(x) Tr{|x〉〈x|Π̂Λ′} (3.64)

= Tr{ρ̂Π̂Λ′} =
∑
y∈T ′

〈y|ρ̂|y〉 =
∑
y∈T ′

q(y) (3.65)

≤ qmax|T ′| ≤ 2−N(S−δ)2N(S−δ−ε′) (3.66)

= 2−Nε′ , (3.67)

which vanishes for N → 0. So already the projection will fail in the limit of long
messages. This implies that the state ρ̂x after the projection will contain a vanishing
component of the original message,

ρ̂x = PΛ′(x)|φ(x)〉〈φ(x)|+ (1− PΛ′(x))|φ0〉φ0| (3.68)

= Π̂Λ′ |x〉〈x|Π̂Λ′ + (1− PΛ′(x))|φ0〉〈φ0|. (3.69)
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The fidelity of ρ̂x with |x〉 will also vanish,

F (x) = 〈x|ρ̂x|x〉 (3.70)

= P 2
Λ′(x) + rx (3.71)

≤ PΛ′(x) + rx (3.72)

= Tr{|x〉〈x|Π̂Λ′}+ rx, (3.73)

where we used PΛ′(x) ≤ 1 and defined

rx := 〈x|
{
(1− PΛ′(x))|φ0〉〈φ0|

}
|x〉 ≥ 0 (3.74)

The average fidelity becomes

F =
∑

x∈M
p(x)F (x) (3.75)

≤ Tr{ρ̂Π̂Λ′}+
∑

x∈M
p(x) rx (3.76)

= PΛ′ + r (3.77)

≤ 2−Nε′ + r, (3.78)

where
r :=

∑
x∈M

p(x) rx. (3.79)

In the limit N →∞, the average fidelity will approach

F → r, (3.80)

which is just the average overlap of the source message ensemble with the garbage state
|φ0〉. So even if the coding fails, there is still a chance to accidentally decode the correct
message. However, such chance has nothing to do with faithful decoding, because the
garbage state does not contain any information about the original message. Bob could
simply guess the correct message with non-zero probability. We can get rid of r by
choosing |φ0〉 orthogonal to all source messages.
Concluding, Schumacher derived the quantum analog of Shannon’s source coding theo-
rem: A symbol ensemble X of quantum states can be compressed to S(ρ̂) qubits in the
asymptotic limit of infinitely long messages, where ρ̂ is the density matrix corresponding
to the ensemble X. Compressing to fewer than S(ρ̂) qubits results in the loss of all
information in the asymptotic limit.



Chapter 4

Lossless Compression

As Schumacher has showed, lossy compression is possible in such a way that in the
asymptotic limit of infinitely long messages the losses can be neglected. It is the aim of
the following investigations to find statements about lossless quantum codes in analogy
to the classical case.

The intention of using compressing codes is to minimize the effort of communication
between two parties: Alice is preparing source messages |x〉 ∈ V and encodes them into
codewords |c(x)〉 ∈ H⊕r by applying the encoder Ĉ. She compresses the codewords
by removing redundant quantum digits and sends the result to Bob, who receives them
and decompresses them by appending quantum digits. After that he can decode the
messages by applying the decoder D̂ and read them or use them as an input for further
computations. The communication has been lossless if the decoded message equals the
source message. Note that it is not required for Bob to read the message he received!
In fact, if Bob wants to use the message as an input for a quantum computer, he even
must not do that, else he will potentially lose information. As we will soon see, it is
important that Alice apriorily knows which source messages she prepares, otherwise no
lossless compression would be possible.

4.1 How not to compress

Let us look for some statements about lossless codes. The first three of the following
no-go theorems are also known in classical information theory and are easily transferred
to the quantum case by general reasoning. However, we show them by applying the
tools developed in this book. The last theorem is genuinely quantum with no classical
analogue.

No lossless compression by block codes

A code is a block code if all codewords have the same length, else it is a variable-
length code. Unfortunately, lossless block codes do not compress. Take an arbitrary
ensemble X = {p,X} with X ⊂ V and any lossless k-ary block code c : V → H⊗n.
Let BV and Bn be orthonormal basis sets of V and H⊗n, respectively. In order to find
for every basis vector |ω〉 ∈ BV a code basis vector |c(ω)〉 ∈ Bn, the code must fulfill

65
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dimV ≤ dimH⊗n = kn. For every |x〉 ∈ X , the corresponding codeword |c(x)〉 has
sharp length L(x) = n, hence

Ic(X) = log2 k
∑
x∈X

p(x)Lc(x) = log2 k · n = log2(k
n) (4.1)

≥ log2(dimV) = I0(V), (4.2)

which violates condition (3.10). This implies that there is no lossless compressing block
code. By choosing mutually orthogonal source states one can derive the analogue state-
ment for the classical case.

For long quantum messages emitted by a memoryless source, block codes can achieve
almost lossless compression by encoding only typical subspaces. The quantum code
performing this type of lossy compression is the Schumacher code [24] which we have
treated above. The only way to compress messages without loss of information is by
use of a variable-length code. In order to achieve compression, more frequent messages
must be encoded by shorter messages, less frequent messages by longer messages, so
that the average length of the code messages is minimized. This is the general rule of
lossless data compression.

No lossless compression by changing the alphabet

Trying to achieve compression by using a different alphabet does not work.

A code c : H⊗n
A → H⊗m

B that transforms messages over some symbol space HA into
messages over some symbol space HB is lossless only if dimH⊗n

A ≤ dimH⊗m
B , which

implies that

I0(V) = n log2(dimHA) (4.3)

≤ m log2(dimHB) = Ic(x), (4.4)

for every |x〉 ∈ HA. So for every ensemble X = {p,X} of messages |x〉 ∈ Hm
A , we

have Ic(X) = Ic(x) ≥ I0(V), which violates condition (3.10). By choosing mutually
orthogonal source states, one can derive the analogue statement for the classical case.
This book looks probably much shorter when written in chinese symbols. However, the
effort of communication that is expressed by the effective quantum information Ic, would
not be reduced.

No universal lossless compression

We have seen that it is not possible to compress messages without loss of information
by using a block code or by using a different symbol space. Now we will see that no
code can compress all messages without loss of information.

Say we have a space H⊗n of block messages of fixed length r and we want to compress
all of them by use of a variable-length code c : H⊗r → H⊕s with s < r. The code can
only be lossless if

dimH⊗r ≤ dimH⊕s. (4.5)
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But since dimH⊗r = kr and dimH⊕s = ks+1−1
k−1 , we have

kr ≤ ks+1 − 1
k − 1

(4.6)

⇒ kr+1 ≤ ks+1 + k − 1 (4.7)

which is wrong for r ≥ s and k > 1, so we cannot compress all block messages of a
given length. Now say we have a space H⊕r of variable-length messages with maximal
length r. Assume that there is a universal lossless code c that reduces the length of
all messages in H⊕r. The code can only be lossless if dimH⊕r ≤ dimH⊕s, which is
obviously wrong for r > s, so we cannot compress all variable-length messages with a
given maximal length. Concluding, there is no universal lossless compression that reduces
the size of all messages. Some messages are unavoidably lengthened by a lossless code.
By choosing mutually orthogonal source states, one can derive the analogue statement
for the classical case.

No lossless compression of unknown messages

Now we come to a no-compression theorem that is typically quantum. In quantum
mechanics there is a profound difference between a known and an unknown state. For
example, a known state can be cloned (by simply preparing another copy of it), whereas
an unknown state cannot be cloned.

Theorem 7 (No-compression Theorem) It is impossible to compress an unknown
quantum message without loss of information.

Proof. Assume that there is a lossless quantum compression algorithm

c : H⊗r → H⊕s ≡
s⊕

n=0

H⊗n (4.8)

that compresses messages of fixed length r to variable-length messages of maximal
length s. As shown above, a lossless code cannot compress all messages, so s > r.
Now there is an oracle that hands Alice an arbitrary message |x〉 =

∑n
i=1 xi |ωi〉 where

the |ωi〉 ∈ H⊗r are mutually orthogonal states. The algorithm encodes the message |x〉
into |c(x)〉 =

∑n
i=1 xi |c(ωi)〉. In order for the code c to achieve lossless compression, it

must be a variable-length code. Therefore, even if all the codeword components |c(ωi)〉
have determinate length, the total codeword |c(x)〉 has in general indeterminate length.
If Alice wants to remove redundant digits without loss of information, she must know
at least an upper bound for the base length of |c(x)〉, i.e. the length of its longest
component. Since |c(x)〉 is an indeterminate-length message, Alice cannot measure the
length without disturbing the state and thereby losing information, so she has to assume
the maximal length s. Since s > r, no compression is achieved. The same argument
applies to quantum compression algorithms c : H⊕r → H⊕s that compress variable-
length messages of maximal length r to variable-length messages of maximal length s.
�
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This theorem is not true for the classical case. A classical message is not disturbed by
a length measurement, so it can in principle be compressed without loss of information.
It would be nice to compress a quantum hard disk without loss of information just like
a classical hard disk, but as we have seen this cannot be accomplished.

4.2 How to compress

Now that we have found a lot of impossible things to do with quantum messages, it is
time to look for the possible things.

4.2.1 Why prefix quantum codes are not very useful

In classical information theory, prefix codes are favored for lossless coding. The reason is
that they are instantaneous, which means that they carry their own length information
(see section 2.6.2). Prefix codewords can be sent or stored without a separating signal
between them. The decoder can add word separators (“commas”) while reading the
sequence from left to right. Whenever a message of letters yields a valid codeword,
the decoder can add a comma and proceed. After all, a continuous stream of letters is
separated into valid codewords.
Prefix codewords can be separated while reading the sequence, but in the quantum
case this is potentially a very bad thing to do. Reading a stream of quantum letters
means in general disturbing the message all the time. Therefore, the length information
is generally not available. Furthermore, prefix codewords are in general longer than
non-prefix codewords, because there are less prefix codewords of a given maximal length
than possible codewords. Hence, by using prefix codewords qubits are wasted to encode
length information which is unavailable anyway. We conclude that prefix quantum codes
are practically not very useful.

4.2.2 A classical side-channel

One could try to encode length information in a different quantum channel, as proposed
by Braunstein et al. [13] (unnecessarily they used prefix codewords anyhow). But that
does not fix the problem. Whatever one does, reading out length information about
different components of a variable-length codeword equals a length measurement and
hence means disturbing the message. Though there should be some way to make sure
where the codewords have to be separated, else the message cannot be decoded at all.
Here is an idea: Use a classical side-channel to inform the receiver where the codewords
have to be separated. This has two significant advantages:

• If the length information equals the base length of the codeword, the message is
not disturbed and can be losslessly transmitted and decoded.

• Abandoning the prefix condition, shorter codewords can be chosen, such that the
quantum channel is used with higher efficiency.

Let us give an example (see Fig. 4.1). Alice wants to send a message |x1〉 which is
encoded into the codeword |c(x1)〉 = 1√

3
(|1001101〉+ |1101〉+ |10〉). The base length
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j11i+ j1011i+ j11101i
j1001101i+ j1101i+ j10i ......

Quantum
Channel

Classical
Channel

7 5 2

j10i+ j11i+ j1i
Figure 4.1: Storing length information in a classical side-channel.

of |c(x1)〉 is 7, so she submits that information through the classical channel. Dependent
on which realization of variable-length messages Alice and Bob have agreed to use, Alice
sends enough qubits (at least 7) representing the codeword |c(x1)〉 through the quantum
channel. The next codeword is |c(x2)〉 = 1√

3
(|11〉+ |1011〉+ |11101〉). The base length

of |c(x2)〉 is 5, so Alice sends the length information “5” through the classical channel
and enough qubits (at least 5) representing the codeword |c(x2)〉 through the quantum
channel. She proceeds like that with all following messages. On Bob’s side, there is
a continuous stream of qubits coming through the quantum channel and a continuous
stream of classical bits coming through the classical channel. Bob can read out the
classical length information, separate the qubits into the specified blocks and apply the
decoder to each codeword. After all, Bob obtains all source messages without loss of
information.

4.2.3 Bounds for compression

Lower bound

How much compression can maximally be achieved by using the method sketched in
section 4.2.2? Say Alice has an ensemble X = {p,X} of m = |X | messages |xi〉 ∈ X ,
i = 1, . . . ,m that she wants to encode by k-ary codewords. The source space V is
spanned by the elements of X , thus V := Span(X ), and has dimension d := dimV.
Alice fixes a basis set BV of d orthonormal vectors |ωi〉, i = 1, . . . , d. The ensemble X
corresponds to the message matrix

ρ :=
m∑

i=1

p(xi) |xi〉〈xi| =
d∑

i,j=1

ρij |ωi〉〈ωj |, (4.9)

with ρij := 〈ωi|ρ|ωj〉 and
∑d

i=1 ρii = 1. The source messages are encoded by the
isometric map c : V → H⊕, defined by

|ωi〉
c7−→ |c(ωi)〉, i = 1, . . . d. (4.10)

The code space is k-ary, which means that k = dimH. Let each codeword |c(ωi)〉 have
determinate length Lc(ωi), such that the code length operator L̂c on V is orthogonal in
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the basis BV and reads

L̂c =
d∑

i=1

Lc(ωi) |ωi〉〈ωi|. (4.11)

The codewords |c(ωi)〉 are not necessarily prefix, because Alice can encode the length
information about each codeword in a classical side-channel. In order for the transmission
to be lossless, she has to transmit the base length Lc(xi) of each codeword corresponding
to the source message |xi〉. The base length is at least as long as the expected code
length of the codeword, hence

Lc(xi) ≥ 〈xi|L̂c|xi〉. (4.12)

Now we are interested in the average base length, since this determines the compression
rate. The average base length is bounded from below by

Lc(X) =
m∑

i=1

p(xi)Lc(xi) (4.13)

≥
m∑

i=1

p(xi) 〈xi|L̂c|xi〉 = Tr{ρ L̂c} (4.14)

=
m∑

i=1

ρii Lc(ωi). (4.15)

Now we perform the following trick. As already stated, non-prefix codewords can be
chosen shorter than (or at most as long as) prefix codewords. Consider an arbitrary
prefix code c′, then

Lc′(ωi) = Lc(ωi) + lc′(ωi) ≥ Lc(ωi), (4.16)

where lc′(ωi) ≥ 0 is the length difference between the prefix and the non-prefix codeword
for |ωi〉. Prefix codes, just like all uniquely decodable symbol codes, have to fulfill the
Kraft inequality [17, 42]

d∑
i=1

k−Lc′ (ωi) ≤ 1. (4.17)

Since the code length operator L̂c′ is orthogonal in the basis BV , we can express the
above condition by the quantum Kraft inequality

TrV{k−L̂c′} ≤ 1, (4.18)

where L̂c′ := L̂c + l̂c′ and

l̂c′ :=
d∑

i=1

lc′(ωi) |ωi〉〈ωi|. (4.19)

The quantum Kraft inequality was derived for the first time by Schumacher and West-
moreland [51]. Here, the quantum Kraft inequality requires that

Q :=
d∑

i=1

k−Lc(ωi)−lc′ (ωi) ≤ 1. (4.20)
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Now define implicit probabilities

q(ωi) :=
1
Q
k−Lc(ωi)−lc′ (ωi), (4.21)

which can be rewritten as

Lc(ωi) = − logk q(ωi)− logk Q− l′(ωi). (4.22)

Summing over the ρii yields

d∑
i=1

ρii Lc(ωi) = −
d∑

i=1

ρii logk q(ωi)− logk Q− l′, (4.23)

where

l′ :=
d∑

i=1

ρii lc′(ωi) = Tr{ρ l̂c′} (4.24)

is the average additional length. The inequality (4.15) can now be expressed by

Lc(X) ≥ −
d∑

i=1

ρii logk q(ωi)− logk Q− l′. (4.25)

Gibbs’ inequality (1.119) implies that

Lc(X) ≥ −
d∑

i=1

ρii logk ρii − logk Q− l′. (4.26)

The von-Neumann entropy of the message matrix ρ cannot decrease by a non-selective
projective measurement in the basis BV , hence

S(ρ̂) ≤ S(ρ′), (4.27)

where

ρ′ :=
d∑

i=1

|ωi〉〈ωi|ρ|ωi〉〈ωi| =
d∑

i=1

ρii|ωi〉〈ωi|. (4.28)

Since

S(ρ′) = −
d∑

i=1

ρii log2 ρii = − log2 k

d∑
i=1

ρii logk ρii, (4.29)

relation (4.27) states that

−
d∑

i=1

ρii logk ρii ≥
1

log2 k
S(ρ̂). (4.30)
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Using (4.30) together with the Kraft inequality Q ≤ 1, relation (4.26) transforms into

log2 k ·
{
Lc(X) + l′

}
≥ S(ρ̂)− logk Q ≥ S(ρ̂). (4.31)

Recalling the definition of the effective quantum information (3.8) and defining the
length information that can be drawn into the classical side-channel by

I ′ := log2 k · l′, (4.32)

we finally arrive at the lower bound relation

Ic(X) + I ′ ≥ S(ρ̂). (4.33)

If c is a uniquely decodable symbol code, e.g. a prefix code, we have I ′ = 0. In-
equality (4.33) states that the ensemble X can be losslessly compressed not below S(ρ̂)
qubits. However, by drawing length information into a classical side-channel it is possible
to reduce the average number of qubits passing through the quantum channel below
the von-Neumann entropy. We will give an example later on where this really happens.

Upper bound

Let us look for an upper bound for the compression that can be achieved. In order to
encode every source vector in V by a k-ary code, we need at most

Lc(x) ≤ dlogk(dimV)e ≤ logk(dimV) + 1 (4.34)

digits. Using loga x = loga b · logb x, we have

Ic(X) ≤ log2(dimV) + log2 k. (4.35)

This upper bound is neither very tight nor is it related to the von-Neumann entropy.
However, our efforts to find a more interesting upper bound were not successful. It
remains an open question to find such a bound and hence a quantum mechanical gen-
eralization to Shannon’s theorem [52],

H(X) ≤ Ic(X) ≤ H(X) + log2 k, (4.36)

which looks more familiar for k = 2, such that log2 k = 1 and Ic(X) = Lc(X).

4.2.4 Quantum Morse codes

One way to avoid a classical side-channel is to leave a pause between the quantum
codewords, which equals an additional orthogonal “separator state”. Such a code is
a quantum analogue to the Morse code, where the codewords are also separated by a
pause, in order to avoid prefix codewords. Of course, the codewords plus the pause are
prefix. Due to the close analogy one could speak of quantum Morse codes. Here, the
information I ′ needed for the separator state is independent from the statistics, because
the separator state must be sent after each letter codeword, no matter which one. In
contrast to that, I ′ is in general dependent from the statistics. If one transmits the
length of each codeword through a classical side-channel, one can use a Huffman code
to find shorter codewords for more frequent length values. Such is done in the following
compression scheme.
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4.3 A lossless compression scheme

Let us construct an explicit coding scheme that realizes lossless quantum compression.

4.3.1 Basic idea

Alice and Bob have a quantum computer on both sides of the channel. They both
allocate a register of r k-ary quantum digits, whose physical space is given by R =
D⊗r with D = Ck. They agree to use neutral-prefix codewords (see section 2.6.2)
to implement variable-length coding, hence the message space is Nr of dimension kr

and is physically realized by the operational space Ñr = R. Alice is preparing source
messages |xi〉, i = 1, . . . ,m from a set X . The space spanned by these messages is
the source space V = Span(X ). Alice prepares each message |x〉 ∈ X with probability
p(x), which gives the ensemble X := {p,X}. She encodes the source messages into
variable-length codewords |c(x)〉 ∈ Nr of maximal length r. If the dimension of V is
given by d := dimV, then the length of the register must fulfill

r ≥ dlogk de. (4.37)

If the set X is linearly dependent, Alice creates a set X̃ = X , removes the most probable
message from X̃ and puts it into a list M . Next, she removes again the most probable
message from X̃ , appends it to the list M and checks if the list is now linearly dependent.
If so, she removes the last element from M again. Then she proceeds with removing the
next probable message from X̃ and appending it to M , checking for linearly dependence,
and so on. In the end she obtains a list

M = (|x1〉, . . . , |xd〉) (4.38)

of linearly independent source messages from X , ordered by decreasing probability, such
that p(xi) ≥ p(xj) for i ≤ j. She performs a Gram-Schmidt orthononormalization on
the list M , giving a list B of orthornormal vectors |ωi〉, defined by

|ω1〉 := |x1〉, (4.39)

|ωi〉 := Ni

[
1−

i−1∑
j=1

|ωj〉〈ωj |
]
|xi〉, (4.40)

with i = 2, . . . , d and suitable normalization constants Ni. The elements of B form an
orthonormal basis BV for the source space V. Now she assigns codewords

|c(ωi)〉 := |Zr
k(i− 1)〉, i = 1, . . . , d. (4.41)

of increasing significant length

Lc(ωi) = dlogk(i)e. (4.42)

Note that the first codeword is the empty message |�〉 = |Zr
k(0)〉 = |0 · · · 0〉, which

does not have to be sent through the quantum channel at all. Instead, nothing is sent
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through the quantum channel and a signal representing “length 0” is sent through the
classical channel. Alice implements the encoder

C :=
d∑

i=1

|c(ωi)〉〈ωi|, (4.43)

by a gate array on R. Then she calculates the base lengths of the codewords,

Lc(x) = max
i=1,...,d

{Lc(ωi) | |〈ωi|x〉|2 > 0}, (4.44)

for every message |x〉 ∈ X and writes them into a table. The classical information
is compressed using Huffman coding of the set of distinct base length values L =
{Lc(ω1), . . . , Lc(ωd)}. Alice constructs the Huffman codeword to each length l ∈ L
appearing with probability

pl =
∑

x: Lc(x)=l

p(x), (4.45)

and writes them into a table. At last, Alice builds a gate array realizing the decoder
D = C−1 and gives it to Bob. For the classical channel she hands the table with the
Huffman codewords for the distinct lengths to Bob. Now everything is prepared and the
communication can begin.

4.3.2 Communication protocol

Alice prepares the message |x〉 ∈ X and applies the encoder C to obtain |c(x)〉. She
looks up the corresponding code base length Lc(x) in the table. If Lc(x) < r, she
truncates the message to Lc(x) digits by removing r − Lc(x) leading digits. She sends
the Lc(x) digits through the quantum channel and the length information Lc(x) through
the classical channel. Then she proceeds with the next message.
For any message |x〉 Alice sends, Bob receives the length information Lc(x) through the
classical channel and Lc(x) digits through the quantum channel. He adds r − Lc(x)
quantum digits in the state |0〉 at the beginning of the received codeword. He then
applies the decoder D and obtains the original message |x〉 with perfect fidelity. Note
that Alice can send any message from the source message space V, the protocol will
ensure a lossless communication of the message. For such arbitrary messages, however,
compression will in general not be achieved, since the protocol is only adapted to the
particular ensemble X. Also, Bob can as well store all received quantum digits on his
quantum hard disk and the received length information on his classical hard disk, and
go to bed. The next day, he can scan the classical hard disk for length information
and separate and decode the corresponding codewords on the quantum hard disk. The
protocol works as well for online communication as for data storage.

4.3.3 An explicit example

Alice and Bob want to communicate vectors of a 4-dimensional Hilbert space V =
Span{|0〉, |1〉, |2〉, |3〉}, where we use the row notation in the following. Alice decides to
use the (linearly dependent) source message set

X = {|a〉, |b〉, |c〉, |d〉, |e〉, |f〉, |g〉, |h〉, |i〉, |j〉}, (4.46)
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whose elements are given by

|a〉 =
1
2
(1, 1, 1, 1), |b〉 =

1√
5
(1, 2, 1, 1)

|c〉 =
1√
6
(1, 3, 1, 1), |d〉 =

1√
7
(1, 4, 1, 1)

|e〉 =
1√
2
(1, 0, 1, 0), |f〉 =

1√
3
(2, 0, 1, 0)

|g〉 =
1
2
(3, 0, 1, 0), |h〉 =

1√
2
(0, 1, 0, 1)

|i〉 =
1√
3
(0, 2, 0, 1), |j〉 =

1
2
(0, 3, 0, 1)

(4.47)

and which are used with the probabilities

p(a) = 0.6, p(b) = p(c) = p(d) = 0.1,

p(e) = . . . = p(j) =
0.3
3
.

(4.48)

The Shannon entropy of the ensemble X = {p,X} is

H(X) = 2.02945, (4.49)

and the classical raw information (1.19) reads

I0(X ) = log2 |X | = 3.32193, (4.50)

which gives an optimal classical compression rate of R = H/I0 = 0.610924. If Bob
knows Alice’s list of possible messages, then this rate could in the optimal case be
achieved by pure classical communication. However, Bob does not know the list and
classical communication is not the task here. The message matrix ρ =

∑
x∈X p(x)|x〉〈x|,

given by

ρ =


0.214549 0.224624 0.197882 0.177882
0.224624 0.40302 0.224624 0.244624
0.197882 0.224624 0.191216 0.177882
0.177882 0.244624 0.177882 0.191216

 (4.51)

has von-Neumann entropy
S(ρ̂) = 0.571241. (4.52)

The orthogonalization procedure yields the basis BV = {|ωi〉} with

|ω1〉 = (0.5, 0.5, 0.5, 0.5)
|ω2〉 = (−0.288675, 0.866025,−0.288675,−0.288675)
|ω3〉 = (0.408248, 0, 0.408248,−0.816497)
|ω4〉 = (0.707107, 0,−0.707107, 0).

(4.53)

Let the quantum channel be binary, i.e. let k = 2. The codewords are constructed along
|c(ωi)〉 = |Z2(i− 1)〉, yielding the variable-length states

|c(ω1)〉 = |�〉, |c(ω2)〉 = |1〉
|c(ω3)〉 = |10〉, |c(ω4)〉 = |11〉,

(4.54)
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that span the code space C. In a neutral-prefix code they are realized by the 2-qubit
states

|c̃(ω1)〉 = |00〉, |c̃(ω2)〉 = |01〉
|c̃(ω3)〉 = |10〉, |c̃(ω4)〉 = |11〉

(4.55)

that span the operational code space C̃, which is a subspace of the physical space
R = C2 ⊗C2. Alice realizes the encoder C : V → C̃, C =

∑
i |c̃(ωi)〉〈ωi|, given by

C =


0.5 0.5 0.5 0.5

−0.288675 0.866025 −0.288675 −0.288675
0.408248 0 0.408248 −0.816497
0.707107 0 −0.707107 0

 (4.56)

and the decoder D = C−1, given by

D =


0.5 0.408248 −0.288675 0.707107
0.5 0 0.866025 0
0.5 0.408248 −0.288675 −0.707107
0.5 −0.816497 −0.288675 0

 (4.57)

by gate arrays and gives the decoder to Bob. The encoded alphabet is obtained by
|c(x)〉 = C|x〉. Alice writes the base lengths of the codewords

Lc(a) = 0, Lc(b) = Lc(c) = Lc(d) = 1,
Lc(e) = . . . = Lc(j) = 2

(4.58)

in a table and calculates the corresponding probabilities

p0 = 0.6, p1 = 0.3, p2 = 0.1 (4.59)

She constructs Huffman codewords for each length

c0 = 1, c1 = 01, c2 = 00, (4.60)

such that the average bit length is

L′ =
2∑

l=0

pl · l = 1.4, (4.61)

which is the optimal value next to the Shannon entropy of the length ensemble

I ′ = −
2∑

l=0

pl log2 pl = 1.29546 . (4.62)

Alice hands the table with the Huffman codewords to Bob and tells him that he must
listen to the classical channel, decode the arriving Huffman codewords into numbers,
receive packages of qubits, whose size corresponds to the decoded numbers, and add
to each package enough leading qubits in the state |0〉 to end up with 2 qubits. Then
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he must apply the decoder D to each extended package and he will get Alice’s original
messages.

Say, Alice wants to send the message |a〉. She prepares |a〉 and applies the encoder C
to obtain the codeword |00〉. She looks up the corresponding base length Lc(a) = 0
and truncates the codeword to Lc(a) = 0 qubits. In this case there are no qubits left at
all, so she sends nothing through the quantum channel and the Huffman codeword for
“length 0” through the classical channel. Bob receives the classical length information
“0” and knows that nothing comes through the quantum channel and that in this case
he has to prepare 2 qubits in the state |00〉. He applies the decoder D and obtains
Alice’s original message |a〉. In order to send message |b〉, Alice truncates the codeword
to Lc(b) = 1 qubit and obtains 1√

2
(|0〉+ |1〉). She sends the qubit through the quantum

channel together with the classical signal “length 1”. Bob receives the length message
and knows that he has to take the next qubit from the quantum channel and that he
has to add 1 leading qubit in the state |0〉. He applies D and obtains Alice’s original
message |b〉. The whole procedure works instantaneous and without loss of information.
Timo Felbinger and me have implemented the above example by a MathematicaTM

program and numerical simulations show that the procedure works fine and the specified
compression of quantum data is achieved. (You can find the program and the package
at [21]).

Let us look for the compression that has been achieved. The quantum effective quantum
information, i.e. the average number of qubits being sent through the quantum channel,

Ic =
∑
x∈X

p(x)Lc(x) = 0.5, (4.63)

falls below(!) the von-Neumann entropy:

Ic < S = 0.571241. (4.64)

Such a behaviour has already been suspected in section 4.2.3. The quantum raw infor-
mation, i.e. the size of the non-compressed messages, is given by

Ic < I0 = log2(dimV) = 2, (4.65)

hence the compression rate on the quantum channel reads

Rc =
Ic

I0
= 0.25. (4.66)

In other words, the number of qubits passing through the quantum channel is reduced
by 75 %. Sending 100 messages without compression requires 200 qubits. Using the
compression scheme, Alice typically sends 50 qubits. The sum of both quantum and
classical information,

Itot = Ic + I ′ = 1.79546, (4.67)

is smaller than the Shannon entropy (4.49) of the original ensemble X,

Itot < H = 2.02945, (4.68)



78 Lossless Compression

but greater than the von-Neumann entropy (4.52),

Itot > S = 0.571241. (4.69)

The classical part of the compression depends on the algorithm. Only in the ideal case the
information can be compressed down to the Shannon entropy of the length ensemble,
given by I ′. Using the Huffman scheme, the average length L′ = 1.4 represents the
information that is effectively sent through the classical channel, such that the total
effective information is given by

Ieff = Ic + L′ = 1.9. (4.70)

The the total compression rate of both channels reads

Rtot =
Ic + I ′

I0
= 0.897731 < 1, (4.71)

where it is assumed that the information on the classical channel can be compressed
down to its Shannon entropy I ′. Using the Huffman scheme (as we have done in our
example), the information on the classical channel can only be compressed to L′ > I ′,
such that the effective total compression rate is given by

Reff =
Ic + L′

I0
= 0.95 < 1. (4.72)

Thus in any case there is an overall compression. For higher dimensional source spaces
(hence more letters), the compression is expected to get better (provided the letter
distribution is not too uniform). However, the numerical effort for higher dimensional
letter spaces increases very fast and we want to keep the example as simple as possible.
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Chapter 5

Classical Cryptography

Cryptography is the art of secret communication. A message must be brought from A to
B so that no one else can read it. This task is raised since ages, whenever people have
reason to distrust each other, mostly in a situation of war, of conspiracy, of business,
but also in a private context, in case of criminal action, forbidden love, secret friendship,
or simply in case that personal letters and notes ought to stay truly personal.

The generic situation envolves three parties: Alice, the sender, Bob, the authorized
receiver, and Eve, the evil enemy. What can Alice do to send Bob a message without
letting Eve read it? Whatever mechanism Alice uses, it will amount to hiding the
message from Eve while sending it to Bob. This process of message hiding is called
encryption and the result is called a cryptogram. The instructions which uniquely define
the encryption process represent the key, and we will further specify it as the encoding
key. After encryption Alice sends the resulting cryptogram to Bob. But now she faces a
problem: How should Bob recover the message? Bob is effectively in the same situation
as Eve, because both are potential receivers of the message, hence there must be some
distinctive feature that enables Bob to read the message and not Eve. This distinctive
feature is the posession of the instructions that uniqely define the decryption process.
These instructions represent another key and we will call it the decoding key. In order to
provide a successful transfer, the encoding and decoding key must fit together, so that
the decryption process reverts the encryption process. The entire transfer very much
resembles the situation of putting the message in a box (encryption), sending the box
to Eve (transmission), and getting the message out of the box (decryption), where the
box can only be opened by use of a key. It is evidently necessary that the decoding key
is only available to the authorized receiver, Bob. Whenever Eve also manages to get
this key, she can slip into the role of Bob and recover the message.

There are several methods of hiding the message from the enemy. These methods are
called cryptographic systems or in short cryptosystems. It was again Shannon who made
a major contribution to the systematic investigation of secret communication [53]. He
distinguished three kinds of cryptographic systems: 1) Concealment systems, where the
mere existence of the message is concealed, e.g. by use of invisible ink or by writing the
message on a shaved head or into a microdot. This type of cryptography is also called
steganography , and it remains an important cryptographic method, especially in times of
digital communication where one can hide a message in the pixels of a harmless picture
published on the internet. 2) Privacy systems, where special equipment is required to
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Figure 5.1: General scheme for a private-key cryptosystem. Alice encodes her message into
a cryptogram by use of a private key. She sends the cryptogram to Bob over a channel which
is attacked by Eve. Bob decodes the message by use of the same key. Without the key Eve
can gain very few information. If the cryptosystem is perfectly secure then Eve gain gain no
information at all. However, the problem is how to establish a shared secret key. . . ?

recover the message, e.g. speech inversion or hidden tracks on a vinyl record. 3) Secrecy
systems, where the meaning of the message is concealed by a special code.

We see that all three types of cryptosystems follow the same strategy of encryption,
transmission, and decryption. In the case of concealment systems, the encoding key is
the set of instructions for concealing the message (e.g. “shave the head of the messenger
and write the message on the skin”), and the decoding key is the set of instructions to
revert this procedure (“shave the messenger’s head and read the message”). In the case
of privacy systems, the encryption is a technical procedure of converting the message into
a signal which can only be reverted into the original message by use of special technical
equipment. The instructions how to build the equipment for encryption and decryption
represent the encoding and decoding key, respectively. In the case of secrecy systems
the encryption is a mathematical function on the message message, the decryption is
the inverse of this function and the encoding and decoding key is the parameter needed
to identify the enrypting and decrypting function, respectively.

It is the latter of these three types of cryptosystems, the secrecy systems, that is actually
addressed in communication theory, because it is of a purely mathematical nature and is
therefore preferred by mathematicians. The other two types involve physics. However,
the advent of quantum cryptography has brought physics back to the focus of modern
cryptography. It is special equipment which is needed to execute a quantum crypto-
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graphic protocol: One needs a pulsed laser, a high-quality glass fibre and a sensible
detector. While the classical cryptographic protocols are secure for mathematical rea-
sons, the quantum cryptographic protocols are secure for physical reasons. They make
use of the fact that it is impossible to gain information from a quantum system without
disturbing it. This disturbance can be detected: The observer becomes observable. In a
cryptographic context this typically quantum feature becomes useful, since the observer
is now the enemy who wants to eavesdrop the secret as it is passing from A to B. By
extracting information he disturbs the state of the channel, therefore he modifies the
signal and becomes detectable. As soon as the eavesdropping attack is detected, the
communication is stopped and since the signal only carries information about a random
key later to be used for encryption, the actual message is saved from the enemy’s ruthless
eyes.

5.1 Private-key cryptosystems

Consider our definition of secret communication in the previous section. If the encoding
key is the same as the decoding key then we have a private-key cryptosystem. A private-
key cryptosystem is given by a family FK = {fk | k ∈ K} of encrypting functions fk

parametrized by keys k ∈ K. Sender and receiver agree upon some private key k ∈ K
and a message m ∈M is encrypted by

c = fk(m). (5.1)

The message is decrypted by use of a function gk, such that

gk(fk(m)) = m (5.2)

for all m ∈M. Obviously, gk is the inverse of fk on the set

Ck := fk(M) (5.3)

of all cryptograms that can be obtained by use of the key k. The set of all possible
cryptograms is given by

C =
⋃
k∈K

Ck. (5.4)

5.1.1 Perfect security

A cryptosystem is called perfectly secure or unconditionally secure or information-
theoretically secure if the knowledge available to the eavesdropper does not reveal any
information about the original message. Let us precise this for the case of a private-key
cryptosystem. Let p(m) be the apriori probability of the message m ∈ M and let λk

be the apriori probability of the key k ∈ K. Then the total probability of all keys trans-
forming m into c represents the conditional probability that the message m is encoded
into the cryptogram c,

p(c|m) =
∑

k:fk(m)=c

λk. (5.5)
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Perfect security means that without knowing the key it is impossible to deduce the
original message, which is equivalent to the requirement that

∀m ∈M, c ∈ C : p(c|m) = q(c), (5.6)

where
q(c) =

∑
m

p(c|m)p(m) (5.7)

is the probability of obtaining the cryptogram c. Stated otherwise, a necessary and
sufficient condition for perfect security is that∑

k:fk(m)=c

λk should be independent from m. (5.8)

We can find still other defining conditions for perfect security. The aposteriori probability
of the message m for a given cryptogram c reads

q(m|c) =
p(c|m)p(m)∑
m p(c|m)p(m)

, (5.9)

from where we infer that perfect security requires that the aposteriori probability of a
message m should coincide with its apriori probability,

q(m|c) != p(m) (5.10)

for all m ∈ M and c ∈ C. The joint probability of choosing m and obtaining c is given
by

p(m, c) = p(c|m)p(m) = q(m|c)q(c), (5.11)

so (5.8) or (5.10) are equivalent to

p(m, c) != p(m)q(c), (5.12)

thus perfect security means that the messages and the cryptograms are statistically
independent from each other. Consequently, by learning the cryptogram one learns
nothing about the original message, so the mutual information of the message ensemble
M = {(m, p(m)),m ∈ M} and the cryptogram ensemble C = {(c, q(c)), c ∈ C} is
zero,

I(M :C) != 0. (5.13)

Conditions (5.6, 5.8, 5.10, 5.12, 5.13) are all equivalent for perfect security.
For a fixed key k the encrypting function fk gives a one-to-one correspondence between
all messages m ∈ M and their encryptions c ∈ Ck, so |M| = |Ck| for all k ∈ K. Since
C =

⋃
k Ck we have

|M| ≤ |C|. (5.14)

Each cryptogram c ∈ C fulfills q(c) 6= 0, because by definition of C there is at least
one key that produces this cryptogram from a message. Perfect security requires that
p(c|m) = q(c) 6= 0 for any m ∈M. Hence for any pair (m, c) there must be at least one
key k ∈ K transforming m into c. Now fix m, then there are |C| different pairs (m, c)
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and for each such pair there must be at least one different key, thus we have |C| ≤ |K|.
Using (5.14) we find that there are at least as many keys as there are messages,

|M| ≤ |K|. (5.15)

This is an important conclusion found by Shannon [53] which has the consequence that
in case that the messages and keys are messages over the same alphabet one finds:

The key needed for a perfectly secure transmission of a message is at least
as long as the message to be transmitted.

Perfect security can already be obtained with |M| = |K| as the following example shows.
Let there be n distinct messages mi and cryptograms cj and keys k, then encrypt each
message with the key k by

fk(mi) = cj , j = i+ k (modn). (5.16)

We see that p(c|m) = 1
n = q(c), thus we have perfect security.

5.1.2 The One-Time Pad

There is a perfectly secure private-key cryptosystem, the Vernam cipher or one-time
pad [35]. Alice and Bob agree upon a K-ary alphabet A = {0, 1, 2, . . . ,K − 1} and a
private key k ∈ AN of length N . Alice encodes her message m ∈ AN by adding the
key k modulo K:

fk(x1 · · ·xN ) = fk1(x1) · · · fkN
(xN ), (5.17)

where
fkn(xn) = xn + kn (modK). (5.18)

Bob decrypts the message by subtracting the key letter by letter

gkn(cn) = cn − kn (modK). (5.19)

This method is for each single letter equivalent to Shannon’s encryption method men-
tioned in the previous section. The conditional probability is p(cn|xn) = 1

K = q(cn),
thus the scheme is perfectly secure. The Vernam cipher is also called one-time pad be-
cause the key can only be used one time. This is typical for private-key cryptosystems.
If the key would be in use multiple times then the method would no longer be perfectly
secure, because statistical correlations would appear that make it possible to estimate
the source message up to a certain fidelity.

5.1.3 The key distribution problem

The problem with private-key cryptosystems is: How should Alice and Bob agree upon
the private key? This is the so-called key distribution problem. If Alice and Bob are at
separate locations they must find some procedure to transmit the private key from one
location to another in a secure manner. This again would require another private key
which would in turn have to be securely transmitted and so on. If the key needed for
each secure transmission would be shorter than the message to be transmitted, the entire
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procedure would come to an end and so there would effectively be a finite procedure
providing unconditionally secure communication from one party to another. This cannot
be the case because Eve can at each step eavesdrop the cryptogram and therefore receive
the same information as Bob. In the end Alice would have securely communicated a
message to Bob and to Eve, which is a contradiciton. This also shows that the length
of the key in a perfectly secure cryptosystem cannot be shorter than the length of the
message.

As the key distribution problem makes clear, the problem of secure communication is
effectively shifted from communicating the original message to communicating the key. If
there would be no difference between a message and a key, we could forget about secure
communication. There is, however, an important difference: The message is willingly
chosen while the key may be random. In other words: The message contains meaningful
information, and the key does not. The distinction between “meaningful” and “not
meaningful” is difficult to formalize. Let us agree upon the following: A message is
meaningful if the sender composes the message by his own will, and it is not meaningful
if he composes it by use of a random generator. For an external person both messages
appear random, because the will of the sender is absolutely private, and therefore both
messages are unpredictable. We understand “random” in the sense of “unpredictable”,
thus both the message and the key appear random to an external person but not to the
sender. This distinctive feature between sender and external person can be exploited
in practice: Sender and receiver privately agree upon the key in advance (at a secret
meeting) and then use this key later when communicating the actual message.

Quantum cryptography offers another solution to the key distribution problem: Sender
and receiver generate a shared secret key by use of a quantum communication protocol
which is perfectly secure against eavesdropping in the limit of infinitely long keys. Such
a protocol is the BB84 which we will discuss below.

5.2 Public-key cryptosystems

Consider once more our definition of secure communication in section 5. If the encoding
key is different from the decoding key, then we have a public-key cryptosystem. A
public-key cryptosystem is given by a family FK of encrypting functions and a family
GS of decrypting functions, such that for each encoding key k ∈ K there is at least one
decoding key s ∈ S so that the message is encrypted by fk ∈ FK and is decrypted by
gs ∈ GS ,

gs(fk(m)) = m (5.20)

for all m ∈ M. The secret key s is known to the authorized receiver, and the public
key k is known to everybody, including the sender. The communication protocol goes
as follows: Bob generates a pair (k, s) of matching keys, he transmits the public key
k by use of a public channel to Alice, Alice uses this key to encrypt her message, she
transmits the encrypted message to Bob who then decrypts it by use of the secret key s.
The “public channel” is a channel that can only be modified by an authorized person,
and it is an important element of the protocol. If Eve (who is definitely not authorized)
would have control over the public channel, then she could replace Bob’s public key by a
key of her own choice. Alice would use this key to encrypt her message which then can
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seemlessly be decrypted by Eve. Such an attack is called a man-in-the-middle attack ,
because Eve slips into the role of an authorized person, i.e. either Alice or Bob.

5.2.1 Computational security

The drawback of public-key cryptosystems is that they are not perfectly secure, because
the public key can in principle be used to decrypt the message. Perfect security would
imply that Eve’s knowledge, i.e. the knowledge about the cryptosystem, the cryptogram,
and the public key, does not reveal any information about the original message. However,
gs is obviously the inverse of fk on the set Ck = fk(M). Since Eve knows the public key
k she also knows the function fk, so she can determine the set Ck, and since the inverse
of fk on Ck is unique, it is in principle possible for Eve to determine this inverse, so she
can decrypt any message. Eve can in principle even determine all possible secret keys s
for any given k, because all of them must give the inverse function gs of fk on the range
Ck, so by brute force she could try them all out and write the matching keys down in a
table. Whenever Bob announces the public key, Eve chooses a matching secret key from
her table and decrypts the message. This is not at all what we would understand under
“secure communication”, so what is the public-key cryptosystem actually good for?
The answer is computational security . A cryptosystem is computationally secure if the
best currently known methods cannot break the cryptosystem by consuming a tractable
amount of time and resources. “Tractable” can be precised to “depending on the length
of the input in an at most polynomial way”. Any computational task that exceeds this
polynomial dependence of time and/or resources on the length of the input is called a
hard computational task. One also speaks of non-polynomial problems or np–problems.
Public-key cryptosystems are computationally secure, because the encrypting function
fk is a trapdoor function, i.e. a function whose inverse is very difficult to compute.
Provided that the computers are not fast enough and the public channel is really public,
there is nothing Eve can do. The secret key always remains secret to Alice, the inverse
encrypting function cannot be computed by Eve, the public key cannot be altered by Eve,
the encrypted message and the public key reveal nothing about the original message.
The problem with computationally secure public-key cryptosystems is: They might be
insecure. The most famous public-key cryptosystem, the RSA protocol [48], is based
upon sophisticated number theoretical algebra, but nobody has found a proof that it
is really a hard computational task to reverse the encryption. More precisely: It is not
yet decided if prime number factorization is truly an np–problem. The situation is even
worse: There already is an efficient algorithm for factorization, and it has been found by
Peter Shor in 1994 [54]. Only, this algorithm makes use of a quantum computer which
has not yet been built and which cannot be efficiently simulated on a classical computer.
If one day a quantum computer can be built then any message ever encoded by a public
key cryptosystem can be deciphered.
However, as long as nobody has found an efficient classical algorithm to break the
cryptosystem on contemporary computer networks, the cryptosystem is assumed to be
computationally secure.
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Chapter 6

Quantum Cryptography

6.1 Quantum key distribution

The key distribution problem which plagues any private-key cryptosystem can be solved
in a way which has not been foreseen by the information theorists, because it is a
physical solution. Assume that there is a public quantum channel between Alice and
Bob, then there are two physical theorems which make it possible to establish a shared
secret key between Alice and Bob: 1) The no-cloning theorem and 2) the uncertainty
principle. Roughly speaking, the no-cloning theorem states that it is impossible to clone
an unknown quantum state and the uncertainty principle states that any measurement
disturbs the system. Let us address these two important theorems.
The no-cloning theorem has independently been discovered by Dieks [18] and by Woot-
ters and Zurek [59] in 1982, and it can be formulated as follows.

Theorem 8 (No-cloning theorem) Assume that there is a machine that acts on a
Hilbert space H ⊗H and realizes for a fixed initial state |χ〉 ∈ H and any input state
|ψ〉 ∈ H the operation

|ψ〉|χ〉 7→ |ψ〉|ψ〉, (6.1)

then this machine contradicts the laws of quantum mechanics.

Proof. By the superposition principle any state |ψ〉 ∈ H can be decomposed into two
distinct states |ψ1〉, |ψ2〉 ∈ H such that

|ψ〉 =
1√
2
(|ψ1〉+ |ψ2〉). (6.2)

Any allowed operation on a quantum system must be linear, so along (6.1) the cloning
machine would act on |ψ〉|χ〉 as

1√
2
(|ψ1〉+ |ψ2〉)|χ〉 =

1√
2
(|ψ1〉|χ〉+ |ψ2〉|χ〉) (6.3)

7→ 1√
2
(|ψ1〉|ψ1〉+ |ψ2〉|ψ2〉). (6.4)

This output is by construction different from |ψ〉|ψ〉 in contradiciton to (6.1), which
proves the theorem. �
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The crucial point is that the state |ψ〉 is assumed to be unknown. If |ψ〉 would be known
then the machine could easily clone the state by preparing another copy of it. Such a
machine would only work for this particular known state |ψ〉 and not for any state.
There is yet another possibility: If M = {|e1〉, . . . , |en〉} is a set of mutually orthogonal
states in H then one can construct a quantum copy machine which performs

|ei〉|χ〉 7→ |ei〉|ei〉, (6.5)

for any |ei〉 ∈ M. Any state |ψ〉 ∈ H can be decomposed into

|ψ〉 =
∑

i

ψi |ei〉+ |φ〉, (6.6)

where ψi = 〈ei|ψ〉 and 〈ei|φ〉 = 0 for all |ei〉 ∈ M. Along (6.5) the quantum copy
machine would act as

|ψ〉|χ〉 =
∑

i

ψi |ei〉|χ〉+ |φ〉|χ〉 (6.7)

7→
∑

i

ψi |ei〉|ei〉+ |φ〉|χ〉, (6.8)

without any contradiciton to the assertions.
Heisenbergs uncertainty principle [27] (see page 31) has an information-theoretical impli-
cation: If information is gained about one of these two observables then this information
gain disturbs the system in such a way that the subsequent information gain about
the other observable is biased. In [44] one can find a theorem which expresses this
information-theoretic implication of Heisenbergs uncertainty principle in a more explicit
way:

Theorem 9 (Information gain implies disturbance) In any attempt to distinguish
between two non-orthogonal states, information gain is only possible at the expense
of introducing disturbance to the signal.

Proof. Due to the Stinespring dilation theorem (see page 38), any allowed quantum
operation can be realized by a unitary operation on a larger Hilbert space. Let |ψ〉, |φ〉
be two non-orthogonal quantum states taken from a Hilbert space HA. Then there is
an ancilla space HE such that any measurement aiming at the distinction between |ψ〉
and |φ〉 is realized by a unitary operation Û acting on the space H = HA ⊗HE , where
the ancilla state represents the pointer state of the measuring device. Assuming that
the operation does not disturb the original state, the operation most generally reads

Û |ψ〉|χ〉 = |ψ〉|χ1〉 (6.9)

Û |φ〉|χ〉 = |φ〉|χ2〉. (6.10)

In order to distinguish the two states |ψ〉 and |φ〉 the pointer states |χ1〉 and |χ2〉 should
be different. Taking the inner product of these two equation one obtains

〈χ1|χ2〉〈ψ|φ〉 = 〈χ|χ〉〈ψ|φ〉 (6.11)

〈χ1|χ2〉 = 〈χ|χ〉 = 1, (6.12)
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therefore |χ1〉 = |χ2〉, so the above operation cannot be used to distinguish |ψ〉 and |φ〉.
�
The proof only works for non-orthogonal states. If 〈ψ|φ〉 = 0 then the line (6.11) does
not imply the next line. In fact, two orthogonal states can be distinguished without
disturbing the system. The above theorem can be linked to the uncertainty principle in
the following way. The distinction between |ψ〉 and |φ〉 corresponds to the measurement
of the two observables Â = |ψ〉〈ψ| and B̂ = |φ〉〈φ|. If the two states are non-orthogonal
then Â and B̂ do not commute and hence Heisenbergs uncertainty principle applies.

6.2 The BB84 protocol

The most famous quantum key distribution protocol is the BB84 which has been intro-
duced by Bennet and Brassard in 1984 [5]. With this protocol it is possible to establish
a shared random sequence between two parties. The protocol is secure against eaves-
dropping in that an eavesdropper can get no information about the sequence without
disturbing it, thus his presence can be detected in which case the communication is
stopped. The BB84 is a non-deterministic protocol, which means that it is only pos-
sible to distribute a random sequence. The BB84 cannot be used to send a message
from Alice to Bob, where we understand a message as a sequence of symbols that can
be willingly chosen. Even if Alice chooses the symbols by will, there is no way for
her to determine which of these symbols are correctly decoded by Bob. Both parties
can only agree upon a random subsequence of symbols which have successfully been
communicated. Let us see how it works.

1. Alice randomly chooses a basis Bi out of two orthogonal bases B0 = {|0〉, |1〉}
and B1 = {|+〉, |−〉}, where

|±〉 =
1√
2
(|0〉 ± |1〉). (6.13)

then she randomly chooses a logical bit j ∈ {0, 1} and encodes it by choosing the
corresponding member of the previously chosen basis,

0 7→ |0〉, |+〉
1 7→ |1〉, |−〉.

(6.14)

This procedure is equivalent to encoding two bits ij into the state |ψij〉, where

|ψ00〉 = |0〉
|ψ01〉 = |1〉
|ψ10〉 = |+〉
|ψ11〉 = |−〉.

(6.15)

It is the second bit j which can later be used as a key bit. After encoding, Alice
sends the qubit to Bob.

2. Bob receives the qubit, randomly chooses i′ ∈ {0, 1} and measures the qubit in
the basis Bi′ . The result |ψi′j′〉 is decoded using the inverse of the scheme (6.14),
such that Bob’s key bit reads j′.
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3. Alice and Bob repeat the steps 1 and 2 4N times.

4. Alice and Bob publicly compare their basis bit sequences i and i′. They discard
those key bits jn and j′n, respectively, where the measurement basis differs from
the preparation basis, i.e. where in 6= i′n. The remaining subsequence s of key
bits typically is of the length 4N/2 = 2N . If no eavesdropper is in the line and
the channel is perfect, this subsequence coincides on Alice’s and Bob’s side.

5. Alice randomly selects a control sequence c of 4N/4 = N bits from s and publicly
announces the position and the value of each bit of the control sequence.

6. Bob compares Alice’s control sequence with the corresponding subsequence on
his side. If both sequences do not coincide then the communication is stopped.
Otherwise the remaining subsequence k = s− c is taken as the key. The typical
length of k is 4N/4 = N . If one increases the length 4N of the original sequence
by some sufficiently large δ then one can make the probability very close to 1 that
at least N key bits are left.

7. From the N key bits Alice and Bob distill a private key by using a classical privacy
amplification protocol.

In the above form the protocol is only secure in the case of a noiseless quantum channel.
If there is noise on the channel then Alice and Bob have to check the control sequence
for a certain threshold of errors at the end of the communication. If this threshold is
exceeded then there must have been an eavesdropper in the line and the key is discarded.
The classical privacy amplification used in the last step to distill the final key is not a
necessary element of the BB84. It just improves the security for the case of imperfect
channels, where a certain amount of information may have leaked out to Eve who has
hidden her presence in the channel noise.

6.3 The Ping-Pong protocol

The BB84 protocol is the most successful quantum cryptosystem. Its experimental real-
ization has already reached a level of high practicality [31, 32, 56, 38]. Other protocols
[20, 7, 14, 3] are either basically equivalent to BB84, have significant limitations or
cannot be realized with standard components. (For a very readable review on quantum
cryptography see [22].) However, there are also some limitiations of the BB84 proto-
col. First, the BB84 is non-deterministic, i.e. Alice can encode a classical bit into a
quantum state which is then sent to Bob, but she cannot determine the bit value that
Bob eventually decodes. Inspite of that, such non-deterministic communication can be
used to establish a shared secret key between Alice and Bob, consisting of a sequence
of random bits. This secret key can then be used to encrypt a message which is sent
through a classical public channel. Second, the BB84 is not instantaneous, i.e. Bob
must wait until the transmission stops, then he establishes a public connection with
Alice, they exchange some more information, after that he is able to decode the key,
and yet they have to transmit the encrypted message over a classical channel. Finally,
the BB84 is not optimally effective, because on average every second transmitted qubit



6.3 The Ping-Pong protocol 93

must be discarded due to a mismatch in preparation basis and measurement basis. The
development of other cryptographic codes which overcome these limitations and which
are experimentally feasible with relatively small effort, is an important issue and poses a
great challenge.

Recently, a novel quantum communication protocol has been presented [4] that allows
secure direct communication, where the message is deterministically sent through the
quantum channel, but can only be decoded after a final transmission of classical infor-
mation.

In [9] a novel secure communication protocol is proposed which is based on an entangled
pair of qubits and which allows asymptotically secure key distribution and quasi-secure
direct communication. Since the information is transferred in a deterministic manner,
no qubits have to be discarded. The security against arbitrary eavesdropping attacks
is shown for the case of a perfect quantum channel. In case of eavesdropping attacks
with full information gain, the detection rate is 50% per control transmission. The
experimental realization of the protocol is feasible with relatively small effort, which
also makes commercial applications conceivable. The ping-pong protocol can be used
for the transmission of either a secret key or a plaintext message. In the latter case,
the protocol is quasi-secure, i.e. an eavesdropper is able to gain a small amount of
message information before being detected. In case of a key transmission the protocol
is asymptotically secure. In contrast to other quantum cryptographic schemes, the
presented scheme is instantaneous, i.e. the information can be decoded during the
transmission and no final transmission of additional information is needed. The basic
idea of the protocol, encoding information by local operations on an EPR pair, has
already been raised by Bennett and Wiesner [6]. In our protocol, we follow this idea,
but abandon the dense coding feature in favour of a secure transmission.

6.3.1 Basic idea

When two photons are maximally entangled in their polarization degree of freedom,
then each single photon is not polarized at all. Denote the horizontal and vertical
polarization state by |0〉 and |1〉, respectively, then the Bell states |ψ±〉 = 1√

2
(|01〉±|10〉)

are maximally entangled states in the two-particle Hilbert space H = HA ⊗ HB. A
measurement of the polarization of one photon, say A, leads to a completely random
result. This is reflected by the fact that the corresponding reduced density matrices,
ρ±A := TrB{|ψ±〉〈ψ±|} are both equal to the complete mixture, ρ±A = 1

21A. Hence,
no experiment performed on only one photon can distinguish these states from each
other. However, since the states |ψ±〉 are mutually orthogonal, a measurement on both
photons can perfectly distinguish the states from each other. In other words: One bit
of information can be encoded in the states |ψ±〉, which is completely unavailable to
anyone who has only access to one of the photons. As one can easily verify, the unitary
operator σ̂A

z ≡ (σ̂z ⊗ 1) = (|0〉〈0| − |1〉〈1|)⊗ 1 flips between the two states |ψ±〉,

σ̂A
z |ψ±〉 = |ψ∓〉. (6.16)

Altough σ̂A
z acts locally, i.e. on one photon only, it has a non-local effect. Someone who

has access to one single photon only, can encode one bit of information, but he cannot
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Figure 6.1: Message mode. Dashed lines are qubit transfers.

decode it, since he has no access to the other photon. This is a situation perfectly suited
for a cryptographic scenario.

6.3.2 Scheme

Bob prepares two photons in the state |ψ+〉. He keeps one photon, the “home qubit”,
and sends the other one, the “travel qubit”, to Alice (“ping!”). Alice decides either
to perform the operation σ̂z on the travel qubit or to do nothing, i.e. to perform
the operation 1. Then she sends the travel qubit back to Bob (“pong!”). Bob, who
has now both qubits again, performs a Bell measurement resulting in either |ψ+〉 or
|ψ−〉, depending on what Alice did. Thus, he has received one bit of information from
Alice. One qubit travels forth and back (“ping-pong!”) and one bit of information
flows from Alice to Bob. Let us introduce two communication modes, “message mode”
and “control mode” (see Figs. 6.1,6.2). By default, Alice and Bob are in message
mode and communicate the way described above. With probability c, Alice switches to
control mode and instead of performing her operation on the travel qubit, she performs
a measurement in the basis Bz = {|0〉, |1〉}. Using the public channel, she sends the
result to Bob, who then also switches to control mode and performs a measurement
in the same basis Bz. Bob compares his own result with Alice’s result. If both results
coincide, Bob knows that Eve is in the line and stops the communication. [t] Let us give
an explicit algorithm for the protocol.

p.0) Protocol is initialized. n = 0. The message to be transmitted is a sequence
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xN = (x1, . . . , xN ), where xn ∈ {0, 1}.

p.1) n = n + 1. Alice and Bob are set to message mode. Bob prepares two qubits in
the Bell state |ψ+〉 = 1√

2
(|01〉+ |10〉).

p.2) He stores one qubit, the home qubit, and sends the other one, the travel qubit,
to Alice through the quantum channel.

p.3) Alice receives the travel qubit. With probability c she switches to control mode
and proceeds with c.1, else she proceeds with m.1.

c.1) Alice measures the travel qubit in the basis Bz and obtains the result i ∈
{0, 1} with equal probability.

c.2) She sends i through the public channel to Bob.

c.3) Bob receives i from the public channel, switches to control mode and mea-
sures the home qubit in the basis Bz resulting in the value j.

c.4) (i = j): Eve is detected. Abort transmission. (i 6= j): Set n = n − 1 and
Goto p.1.

m.1) Define Ĉ0 := 1 and Ĉ1 := σ̂z. For xn ∈ {0, 1}, Alice performs the coding
operation Ĉxn on the travel qubit and sends it back to Bob.

m.2) Bob receives the travel qubit and performs a Bell measurement on both qubits
resulting in the final state |ψ′〉 ∈ {|ψ+〉, |ψ−〉}. He decodes the message as

|ψ′〉 =

{
|ψ+〉 ⇒ xn = 0
|ψ−〉 ⇒ xn = 1

. (6.17)

m.3) (n < N): Goto p.1. (n = N): Goto p.4.

p.4) Message xN is transmitted from Alice to Bob. Communication successfully ter-
minated.

6.3.3 Security proof

Eve is an evil quantum physicist able to build all devices that are allowed by the laws of
quantum mechanics. Her aim is to find out which operation Alice performs. Eve has no
access to Bob’s home qubit, so all her operations are restricted to the travel qubit, whose
state is (to Eve) indistinguishable from the complete mixture ρA = TrB{|ψ+〉〈ψ+|} =
1
21A. The most general quantum operation is a completely positive map E : S(HA) →
S(HA) on the state space S(HA). Due to the Stinespring dilation theorem [55], any
completely positive map can be realized by a unitary operation on a larger Hilbert space.
For HA and E given, there is an ancilla space HE of dimension dimHE ≤ (dimHA)2,
an ancilla state |χ〉 ∈ HE , and a unitary operation Ê on HA ⊗ HE , such that for all
states ρA ∈ S(HA), we have

E(ρA) = TrE{Ê(ρA ⊗ |χ〉〈χ|)Ê†}. (6.18)
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In order to gain information about Alice’s operation, Eve should first perform the unitary
attack operation Ê on the composed system, then let Alice perform her coding operation
Ĉ on the travel qubit, and finally perform a measurement on the composed system (see
Fig. 6.3). Since a probable control measurement by Alice takes place before Eve’s
final measurement, the latter has no influence on the detection probability for Eve’s
attack. All that can be detected is the attack operation Ê. Let us analyze the detection
probability d, given an attack operation Ê. Since for Eve the state of the travel qubit
is indistinguishable from the complete mixture, we can replace the state of the travel
qubit by the apriori mixture ρA = 1

2 |0〉〈0|+
1
2 |1〉〈1|, which corresponds to the situation

where Bob sends the travel qubit in either of the states |0〉 or |1〉, with equal probability
p = 1/2. Let us at first consider the case where Bob sends |0〉. Alice adds an ancilla in
the state |χ〉 and performs the unitary operation Ê on both systems, resulting in

|ψ′〉 = Ê|0, χ〉 = α|0, χ0〉+ β|1, χ1〉, (6.19)

where |χ0〉, |χ1〉 are pure ancilla states uniquely determined by Ê, and |α|2 + |β|2 = 1.
In a subsequent control measurement, Alice measures the travel qubit in the basis Bz =
{|0〉, |1〉} and sends the result to Bob. Without Eve, the result will always read “0”,
hence the detection probability for Eve’s attack in a control run reads

d = |β|2 = 1− |α|2. (6.20)

Now let us analize how much information Eve can maximally gain when there is no
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Figure 6.3: A general eavesdropping attack.

control run. After Eve’s attack operation, the state of the system reads

ρ′ = |ψ′〉〈ψ′| = |α|2|0, χ0〉〈0, χ0|+ |β|2|1, χ1〉〈1, χ1| (6.21)

+αβ∗|0, χ0〉〈1, χ1|+ α∗β|1, χ1〉〈0, χ0|, (6.22)

which can be rewritten in the orthogonal basis {|0, χ0〉, |1, χ1〉} as

ρ′ =
(
|α|2 αβ∗
α∗β |β|2

)
. (6.23)

Alice encodes her bit by applying the operation Ĉ0 = 1 or Ĉ1 = σ̂z to the travel qubit,
with probability p0 and p1, respectively. The state of the travel qubit after Eve’s attack
operation and after Alice’s encoding operation reads

ρ′′ =
(

|α|2 αβ∗(p0 − p1)
α∗β(p0 − p1) |β|2

)
. (6.24)

The maximal amount I0 of classical information that can be extracted from this state
is given by the von-Neumannn entropy, I0 = S(ρ′′) ≡ −Tr{ρ′′ log2 ρ

′′}. In order to
calculate the von-Neumann entropy we need the eigenvalues λ of ρ′′, which are the
roots of the characteristic polynomial det(ρ′′ − λ1), yielding the two eigenvalues

λ1,2 =
1
2

(
1±

√
1− 4|αβ|2[1− (p0 − p1)2]

)
, (6.25)
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Figure 6.4: Eve’s maximal eavesdropping information gain I0 as a function of the detection
probability d. The function is equal to the Shannon entropy of a binary source. For d = 0 there
is no information gain, so Eve can only gain information at the cost of being detectable.

so we have

I0 = −λ1 log2 λ1 − λ2 log2 λ2. (6.26)

The maximal information gain I0 can be expressed as a function of the detection prob-
ability d. Using (6.20), we have |αβ|2 = (1− |β|2)|β|2 = (d− d2), and therefore

λ1,2 =
1
2
± 1

2

√
1− (4d− 4d2)[1− (p0 − p1)2]. (6.27)

Now assume that Bob sends |1〉 rather than |0〉. The above calculations can be done in
full analogy, resulting in the same crucial relations (6.26,6.27). Eve’s task is, of course,
to minimize d. Though if she chooses an eavesdropping action Ê that provides d = 0,
then λ1 = 1, λ2 = 0, which implies I0 = 0, therefore Eve can gain no information at
all. Thus we have shown that any effective eavesdropping attack can be detected.

In the case p0 = p1 = 1/2, where Alice encodes exactly 1 bit, expression (6.27) simplifies
to λ1,2 = 1

2 ± |
1
2 − d|, or λ1 = d, λ2 = 1 − d. Interestingly, the maximal information

gain is equal to the Shannon entropy of a binary source,

I0(d) = −d log2 d− (1− d) log2(1− d). (6.28)

The function I0(d) which is plotted in Fig. 6.4 has a maximum at d = 1/2, and can be
inversed on the interval [0, 1/2], giving a monotonous function 0 ≤ d(I0) ≤ 1/2, I0 ∈
[0, 1]. By choosing a desired information gain I0 > 0 per attack, Eve has to face a
detection probability d(I0) > 0. If she wants to gain the full information (I0 = 1), the
detection probability is d(I0 = 1) = 1/2.
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6.3.4 Direct communication versus key distribution

In contrast to quantum key distribution protocols like BB84 [5], the ping-pong protocol
provides a deterministic transmission of bits, hence it is possible to communicate the
message directly from Alice to Bob. Assuming that Eve wants to gain full information in
each attack, the ping-pong protocol provides a detection probability of d = 1/2, which is
significantly higher than the detection probability of the BB84 protocol, where we have
d = 1

2×
1
2 = 1

4 for the same situation. Furthermore, the BB84 protocol has a probability
of 1/2 that a transmitted bit has to be discarded due to the wrong choice of basis on
both sides.
Taking into account the probability c of a control run, the effective transmission rate,
i.e. the number of message bits per protocol run, reads r = 1− c, which is equal to the
probability for a message transfer. Say, Eve wants to eavesdrop one message transfer
without being detected. The probability for this event reads

s(c, d) = (1− c) + c(1− d)(1− c) +
c2(1− d)2(1− c) + . . . (6.29)

=
1− c

1− c(1− d)
, (6.30)

where the terms in the (geometric) series correspond to Eve having to survive 0, 1, 2, . . .
control runs before she gets to eavesdrop on a message run, finally yielding the desired
information of I0(d) bits. After n successful attacks Eve gains nI0(d) bits of information
and survives with probability sn, thus the probability to successfully eavesdrop I =
nI0(d) bits reads s(I, c, d) = s(c, d)I/I0(d), so

s(I, c, d) =
(

1− c

1− c(1− d)

)I/I0(d)

, (6.31)

where I0(d) is given by (6.28). For c > 0, d > 0, this value decreases exponentially but
is nonzero. In the limit I → ∞ (a message or key of infinite length) we have s → 0,
so the protocol is asymptotically secure, just like the BB84 protocol. Let us give an
example. A convenient choice of the control parameter is c = 0.5, where on average
every second bit is a control bit. Say, Eve wants to gain full information in each attack,
thus I0 = 1 and d = 1/2. The probability that Eve successfully eavesdrops 1 character
(8 bits) is already as low as s ≈ 0.039. In Fig. 6.5 we have plotted the eavesdropping
success probability as a function of the information gain I, for c = 0.5 and for different
detection probabilities d that Eve can choose. (Note that for d < 1/2 Eve only gets part
of the message right and does not even know which part.) If desired, the security can
arbitrarily be improved by increasing the control parameter c at the cost of decreasing
the transmission rate. Let us call such communication “quasi-secure”. If we want a
perfectly secure communication (which is, strictly speaking, also not really perfect), we
must abandon the direct transfer in favour of a key transfer. In this case, Alice does
not transmit the message directly to Bob but rather takes a random sequence of N bits
from a secret random number generator. After a succesful transmission, the random
sequence is used as a shared secret key between Alice and Bob. Eve has virtually no
advantage in eavesdropping only a few bits, because one can choose classical privacy
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Figure 6.5: Eavesdropping success probability as a function of the maximal eavesdrop infor-
mation, plotted for different detection probabilities d. The graph ends as soon as the message
length of 20 bits is reached. for example, if Eve chooses a very low detection probability of
d = 0.025 then she can eavesdrop at most 3.37 bits without being detected and still her success
probability is significantly below 1.

amplification protocols that make it very hard to decode parts of the message with only
some of the key bits given. The one-time-pad scheme , by the way, is not quite a good
choice, because here each eavesdropped key bit directly yields one decoded message bit.
Anyway, as soon as Eve is detected, the transfer stops and she has learned nothing but
a sequence of nonsense random bits.

6.4 Attacking the ping-pong protocol

In its present form, the ping-pong protocol is designed for a noiseless quantum channel.
Security is provided by making use of the fact that information can only be extracted
from the channel at the cost of disturbing the quantum state and thereby generating
errors in the message decoded by the authorized receiver. As soon as the quantum
channel gets noisy, which is the generic situation in the real world, a door is opened for
eavesdroppers to probably attack the protocol without being detected. To find out how
far this door is opened is an important issue to be studied in future research. In the
following we will address several attack scenarios against the ping-pong protocol so far
proposed.

6.4.1 Denial-of-Service attack

Qing-yu Cai proposes a Denial-of-Service attack, in short DoS attack, on the ping-pong
protocol [15]. Such type of attack tries to disturb the communication between the au-
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thorized parties without aiming at information gain, therefore it is not an “eavesdropping
attack”. And in fact, as the author of the attack concedes, there are many effective
methods of classical message authentification which provide sufficient protection against
this kind of attack.
Eve captures the travel qubit on its way from Bob to Alice and performs a measurement in
the z-basis Bz = {|0〉, |1〉}. This measurement destroys the entanglement between travel
qubit and home qubit, therefore it is no longer possible for Alice to encode her message.
The state after Eve’s measurement reads either |01〉 or |10〉, each with probability 1/2.
Alice’s encoding operation

Ĉj = σ̂j
z (6.32)

on the attacked travel qubit does not modify the state. After sending the travel qubit
back to Bob, he will perform a decoding measurement in the Bell basis {|ψ+〉, |ψ−〉}
on travel qubit and home qubit. With probability 1/2 he will either get the result
|ψ+〉 or |ψ−〉 and thus he will decode a completely random sequence which has no
correlation with Alice’s message. In a control run there is no chance to detect the attack
because Alice performs the control measurement in the z-basis. The author proposes
an additional mechanism to detect the attack with probability 1/2 per control run. The
proposed modification is in fact equivalent to the comparison of control bits: Being in
control mode, Alice decides with probability 1− c0 to return the travel qubit untouched,
thus sending a logical “0”. If Bob afterwards decodes a logical “1” (represented by the
state |ψ−〉) and both compare their results, then Eve is detected. However, apart from
control bit comparison there are numerous other classical (and probably more efficient)
methods of message authentification, e.g. checksum analysis, so in fact there is no need
for a modification of the protocol on the level of quantum operations.
It should also be noted that there is no way for Eve to modify the message directedly,
i.e. she cannot send disinformation, because the message information is stored in the
entanglement correlations to which Eve has no access. If she takes the role of Alice and
sends the directedly modified travel qubit back to Bob, then she has to provide another
qubit for Alice which cannot be entangled with Bob’s home qubit, and thus her action
will be detected with probability 1/2 per control run.

6.4.2 Eavesdropping attack on an imperfect quantum channel

Wojcik has proposed an attack scheme on the ping-pong protocol which makes use of
the fact that the decoding errors generated by an eavesdropping attack can be hidden
in transmission losses of the channel [58].
There is a widely accepted criterion for the practicality and security of communication
schemes which has been formulated by Brassard et al. [12]:

“In order to be practical and secure, a quantum key distribution scheme must
be based on existing – or nearly existing – technology, but its security must
be guaranteed against an eavesdropper with unlimited computing power
whose technology is limited only by the laws of quantum mechanics.”

As has been shown in [12], the imperfections of a channel put limitations on the security
of any quantum cryptographic protocol. The ping-pong protocol is practicable, because
it requires technology which is available nowadays. However, its security has only been
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shown for the case of a perfect quantum channel. In the real world there is no perfect
channel, therefore it is an important task to study the security of the protocol also for
the case of an imperfect channel.
Now we come to Wojciks attack scheme. The lossy quantum channel is described by
a single-photon transmission efficiency η, where an ideal channel means that η = 1.
Eve uses two auxiliary spatial modes x, y together with a single photon in the state |0〉.
She attacks the channel twice, for the first time during the transmission from Bob to
Alice (B-A attack) and for the second time during the transmission from Alice to Bob
(A-B attack). Eve prepares her ancilla systems x and y in the state |vac〉x and |0〉y,
respectively, where |vac〉 denotes the vacuum state. The initial state of the total system
is thus given by

|initial〉 = |Ψ+〉ht|vac〉x|0〉y. (6.33)

where the indices h and t refer to the home and travel qubit, respectively, while x and
y refer to the auxiliary modes which are under Eve’s control. After Bob sends the travel
qubit to Alice, Eve intercepts it and applies a joint operation

Q̂txy = ˆSWAPtx
ˆCBPStxyĤy. (6.34)

The SWAPtx corresponds to swapping the states of travel qubit and x-qubit,

ˆSWAP|ψ〉|φ〉 = |φ〉|ψ〉, (6.35)

the CBPStxy corresponds to the action of a controlled polarized beam splitter,

|0〉|vac〉|0〉
|0〉|vac〉|1〉
|1〉|vac〉|0〉
|1〉|vac〉|1〉


CBPS7−→


|0〉|0〉|vac〉
|0〉|vac〉|0〉
|1〉|vac〉|0〉
|1〉|1〉|vac〉

, (6.36)

and Hy corresponds to the Hadamard gate,

|0〉
|1〉

}
H7−→


1√
2
(|0〉+ |1〉

1√
2
(|0〉 − |1〉

. (6.37)

The action of Q̂txy transforms the initial state into the state

|B −A〉 =
1
2
|0〉h(|vac〉t|1〉x|0〉y + |1〉t|1〉x|vac〉y)

+
1
2
|1〉h(|vac〉t|0〉x|1〉y + |0〉t|0〉x|vac〉y). (6.38)

We see that the state of the home qubit is now entangled with both the travel qubit and
Eve’s x qubit. The cost of this “entanglement splitting” is that the travel qubit has now
a vacuum component, i.e. Bob will with probability 1/2 receive no photon. This photon
loss can in principle be detected, but the ping-pong protocol contains in its present form
no mechanism to check such losses. We see that Eve’s attack reproduces the correct
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correlations between travel and home qubit: Whenever Alice and Bob perform a control
measurement, Alice either detects no travel photon, or their respective photon states are
anticorrelated. Therefore, the protocol is not aborted inspite of Eve’s activities. Alice
now encodes the bit j by the operation Ẑj , where we conveniently denote

X̂ := σ̂x, Ŷ := σ̂y, Ẑ := σ̂z. (6.39)

After Alice performs her encoding operation on the travel qubit, the system is in the
state

Ẑj |B −A〉 =
1
2
|0〉h(|vac〉t|1〉x|0〉y + (−1)j |1〉t|1〉x|vac〉y)

+
1
2
|1〉h(|vac〉t|0〉x|1〉y + (−1)j |0〉t|0〉x|vac〉y). (6.40)

As soon as Alice sends the travel qubit back to Bob, Eve intercepts it and applies the
second attack operation Q̂−1

txy, so that the system is now in the state

|A−B〉 =
1√
2
(|0〉h|1〉t|j〉y + |1〉h|0〉t|0〉y)|vac〉x). (6.41)

We see that the information is now partially encoded in Eve’s y qubit. Eve finishes her
attack by measuring the y qubit resulting in the bit value k. The encoding of Alice’s bit
into Eve’s qubit is only partial because if Alice encodes j = 1 there is still a probability
of 1/2 that Eve erroneously decodes k = 0. The rest of the information is still stored in
the entanglement between home and travel qubit. Bob performs his Bell measurement
and decodes the bit value l. If j = 0 then Bob correctly decodes l = 0 because home
and travel qubit factorize off into the Bell state |Ψ+〉. If j = 1 then the total system
is entangled in such a way that the partial trace over Eve’s x and y qubits leaves home
and travel qubit in the mixed state

ρ̂ht =
1
2
(|01〉〈01|+ |10〉〈10|). (6.42)

Therefore with probability 1/2 Bob erroneously decodes the bit value l = 0. Eve’s
actions transforms a perfect channel into an imperfect one. Denoting the bit values
of Alice, Eve and Bob by i, j and k, respectively, one calculates the following joint
probabilities pjkl = p(j, k, l):

p000 =
1
2

(6.43)

p100 = p101 = p110 = p111 =
1
8
, (6.44)

and all other probabilities equal to zero. This gives the following mutual informations:

IAE = IAB =
3
4

log2

4
3
' 0.311 (6.45)

IBE = 1 +
5
8

log2 5− 3
2

log2 3 ' 0.074. (6.46)
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We see that Alice and Bob share the same information as Alice and Eve. Eve can further
reduce the mutual information between Alice and Bob by applying with probability 1/2
the additional operation

Ŝty = X̂Ẑt
ˆCNOTtyX̂t (6.47)

right after the operation Q̂−1
txy, so that the the final state after this “symmetrization”

procedure reads

|A−B〉(S) =
1
2
(|Ψ+〉ht|j〉y + |Ψ−〉ht|j〉y − |Ψ+

ht|1〉y + |Ψ+〉ht|1〉y)|vac〉x). (6.48)

The additional operation disturbs the communication between Alice and Bob by reducing
their mutual information

IAB =
3
4

log2 3− 1 ' 0.189. (6.49)

In other words, the attack scheme works partially as a Denial-of-Service attack. Surpris-
ingly, the qubit error rate (QBER) is not affected by the additional operation, in both
cases it reads

QBER =
∑

k

(p0k1 + p1k0) =
1
4
. (6.50)

As already stated, the eavesdropping attack is not detected, because the control mecha-
nism does not check for photon losses. Moreover, in the case of an imperfect channel the
photon losses can be hidden in the natural channel losses. The channel losses induced
by Eve read 50%. If the transmission efficiency of the channel is η ≤ 1/2 then Eve
can replace the channel by a better one with the efficiency 2η, so that she compensates
the eavesdropping losses. However, now the channel is “too good”, because in message
mode the channel is used twice, thus the efficiency now should read η2 and not 4η2 as
with the better channel. In order to compensate this effect, Eve has to filter out 75% of
the photons reaching Bob in the message mode. In the end, Eve has completely hidden
her eavesdropping action in losses that appear to be natural. If η > 1/2 then Eve should
not attack all the time but instead only a fraction of µ = 2(1 − η), which reduces the
mutual information between Alice and Eve. Though, as a closer investigation shows, it
is possible to eavesdrop a bigger amount of information than what is exchanged between
Alice and Bob, i.e. IAE ≥ IAB, up to efficiencies of η ≤ 0.6.
Wojcik now proposes two modifications of the control mechanism to restore the security
of the protocol. First, the QBER could be tested by sacrificing a part of the message.
Eve’s attacks produces a QBER of 1/4 which is very high as compared to the typical
QBER of a few percent encountered in long-distance quantum cryptography [31, 56,
32, 38], so there is a good chance to detect Eve’s attack. But there is a second, more
effective detection strategy without such a sacrifice. Say, Alice switches to control mode
and measures the home qubit in the z-basis. Now she delays her announcement of the
mode status and waits exactly that amount of time which would be needed for the travel
qubit to go back to Bob. After Alice’s control measurement, the travel qubit is in a
vacuum state which is subsequently filled with a photon by Eve’s B-A attack operation
Q̂−1

txy. Thus with a certain probability Bob will detect a travel photon although Alice
has not sent it back to Bob. This double detection can be used as an evidence of Eve’s
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action. Alice should announce the mode status after this small period of time and if Bob
notices that he received a travel photon although Alice has switched to control mode,
he aborts the communication. Otherwise Bob performs his ususal control measurement
in the z-basis and they both compare their measurement results.
Concluding, Wojcik has proposed an attack scheme which is undetectable as long as
the channel is imperfect and the communication protocol is not altered. He has given
an explicit mechanism to protect the protocol against his attack so that the modified
ping-pong protocol fulfills the condition of both practicality and security.
Wojcik’s attack on a lossy quantum channel has been improved by Zhang et al [61], so
that the eavesdropping-induced channel losses are reduced by 50% and the upper limit
of channel transmission efficiency where undetectable eavesdropping is possible, extends
to 75%. However, the same modifications that would protect the ping-pong protocol
from Wojcik’s attack would also protect it from the improved attack by Zhang et al.

6.4.3 Invisible photon attack

Qing-Yu Cai [16] adapted the Trojan horse attack introduced by Gisin et al [23] to the
ping-pong protocol: Eve feeds in an additional photon which is invisible to Alice and
Bob’s detectors, but which is affected by Alice’s encoding operation. The illegal photon
is inserted into the travel mode on the way from Bob to Alice, and it is filtered out
during the transmission from Alice to Bob. Eve detects the state change of the illegal
photon which is caused by Alice’s encoding operation, and thereby obtains the message
bit without being detected. Choosing a wavelength outside the range of Alice’s detectors
is one possible way to make the illegal photon invisible to the control measurements.
As Cai himself has pointed out, the attack does not exploit a weakness of the protocol
itself but rather of certain imperfect implementations of the protocol. He also suggests
a feasible solution to re-establish the security of the communication: Alice and Bob add
filters to their setup whose bandwidth matches the sensitivity range of the detectors.
The generalization is straightforward: The experimental setup should block any quantum
carriers of information which are invisible to the detectors but which are affected by the
encoding operation.

6.4.4 Attacks that do not work

Zhan-jun Zhang, Yong Li and Zhong-xiao Man [62] proposed an attack scheme against
the ping-pong protocol, enabling the eavesdropper to read out message information
without being detected even in the case of a perfect quantum channel, in contradiction
to our rigorous security proof for this case. However, as we could show [11], the attack
scheme is faulty.
According to their attack scheme, Eve prepares an ancilla state |χ〉 = |vac, 0〉xy in two
additional modes x and y, and applies a unitary operation Wtxy (Eq. (2) in [62]) on
the compound system txy of the travel qubit and the ancilla modes during the B-A-
transmission. Afterwards, the total system is in the state

|B −A〉 =
1
2
|0, 1〉ht(|vac, 0〉xy + |1, vac〉xy)

+
1
2
|1, 0〉ht(|vac, 1〉xy + |0, vac〉xy).

(6.51)
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It is clear that this attack operation cannot be detected by the control measurements of
the ping-pong protocol: z-basis measurements on h and t will still be strictly anticorre-
lated.

In message mode, Alice applies the encoding operation Zj
t = σj

z to the travel photon,
where j ∈ {0, 1} represents the message bit, and sends the photon back to Bob. Eve
intercepts the travel photon, applies the inverse operationW−1

txy on the compound system
txy, resends the travel photon to Alice and keeps her ancilla system. The authors claim
that a measurement on the ancilla system reveals information about the message bit
j encoded by Alice. Indeed, the authors’ Eq. (7), which supposedly shows the state
|A − B〉 after Eve’s (A-B)-attack operation W−1

txy, indicates that the message bit j is
partly encoded in the state of the y photon:

|A−B〉j =
1
2

[
(−1)j(Ψ+

ht + Ψ−
ht)|j〉y

+ (Ψ+
ht −Ψ−

ht)|0〉y
]
|vac〉x.

(6.52)

Obvously, a computational-basis measurement by Eve on the y-mode reveals the message
bit j with probability 1/2, otherwise it yields 0. However, this crucial equation is wrong,
which can be seen as follows. When Alice applies her encoding operation to the travel
photon t, the total system is in the state

Zj
t |B −A〉 =

1√
2

[
(−1)j |0, 1〉ht|χ1〉xy + |1, 0〉ht|χ0〉xy

]
, (6.53)

where we have set

|χ1〉xy =
1√
2
(|vac, 0〉xy + |1, vac〉xy) (6.54)

|χ0〉xy =
1√
2
(|vac, 1〉xy + |0, vac〉xy). (6.55)

As can be seen from above, the message bit j is encoded in the relative phase between
the two components of the superposition. Since Eve has no access to the home photon
h, she can in no way read out the relative phase.

Another attack that does not work has been made on the original security proof itself.
Zhan-jun Zhang challenges the validity of the proof in [60]. However, as we could
show [11], the falseness claim is based on a misunderstanding of the security proof and
also on a miscalculation at a crucial point in the argument.

6.4.5 Conclusion

So far, the ping-pong protocol has resisted all serious attacks brought forward since
its introduction, albeit with slight modifications of the scheme. For the ideal case of
a perfect quantum channel, the original security proof holds and is both rigorous and
general.

However, there still remains the need for a rigorous and general proof that the ping-pong
protocol is secure against arbitrary attacks also on an imperfect quantum channel. For
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the BB84 this has eventually been shown, but it was a lot of work and it took a lot of
time [8, 40, 41, 43, 33].
In view of the above sketched security situation, I think there is good hope that also
for imperfect channels having a realistic transmission efficiencies the ping-pong protocol
may once be proven to be as unconditionally secure as the BB84.

6.5 Realizing the ping-pong protocol

The ping-pong protocol can be implemented by use of standard optical components,
therefore its realization is feasible with nowaday’s technologies. The Bell state |ψ+〉 can
be created by type II spontaneous parametric down conversion [39]. Bob’s Bell measure-
ment must only distinguish between the states |ψ±〉, which can also be accomplished.
The storage of one photon is necessary only for a duration corresponding to twice the
distance between Alice and Bob. The encoding procedure corresponds to a controlled
σ̂z-operation, which can be realized by triggered optical elements. The correlation test
involves a simple measurement of the linear polarization in a fixed basis. Altogether, the
experimental realization of the ping-pong protocol should be feasible using nowaday’s
technology.
Since October 2002 there is a collaboration with an experimentalist group at the uni-
versity of Potsdam under the guidance of Dr. Martin Ostermeyer. Nonlinear crytals,
beamsplitters, polarizers, detectors, and glass fibers are used to generate, transmit and
receive the signals and perform the necessary operations in message mode and control
mode. Recently, the experimental setup has been used to successfully transmit the logo
of the University of Potsdam in a secure manner [45].
In Fig. 6.6 the experimental setup is schematically represented, and Fig. 6.7 shows
a photographic picture of the setup. Since the protocol only requires the distinction
between the two Bell states |ψ±〉, the Bell analyzers do not face the usual difficulty in
distinguishing between all four Bell states. Moreover, the number of detectors can be
reduced to only two at both sides of the channel by a clever design of the setup.
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Fig. 1: Set up for the optical implementation of the ping-pong-coding protocol. PBS denotes polarizing beam 

splitters, BSA the district for the Bell state analysis, HWP half wave plate, and BBO a beta-

Barium-Borate crystal. 

The part of the intersection of the two SPDC emission cones that is coupled into the 

single mode fibres of the photon detectors was matched to the pump spot size [14] and 

corresponds to a bandwidth of 10 nm (FWHM). The single photon counting rate of the 

photons generated from SPDC was 1.2 10
5
 counts/second. The coincidence rate amounts to 

17 % of this value. The ratio between the two pair and single pair generation rate is around 

4$10
-2

. Thus there is a reasonable small but limited chance of beam splitter attacks. The 

SPDC behind the BBO-crystal was corrected for runtime differences by a halfwave plate and 

one compensation crystal each per output path of the SPDC. The polarization entanglement 

of the source was characterized by verifying the CHSH inequality with an S parameter of 

2.66±0.003.  

The home photon stays with Bob. It can be stored in a delay line e.g. a fibre loop. 

Within the proof of principle experiment in our lab Alice and Bob are just separated by about 

one meter. Thus, we used the multiple reflections between mirrors to store the home photon. 

The travel photon is send to Alice (ping). There are two different modes, the message mode 

and the control mode. In message mode (the standard mode) the travel photon bounces back 

from Alice to Bob (pong) and will be interfered with Bob’s home photon at the non 

polarizing beam splitter BS. At Alice on the way to Bob a bit can be encoded via the Pockels 

cell.  

At Bob a special Bell analysis takes place. In case of the message mode travel and 

home will enter the BS simultaneously. There is either one photon each per output arm of the 

beamsplitter ( #
" ) or two photons in one or the other arm together ( !

" ). In case of #
"  

one photon and only one photon has to travel along a longer arm with a half wave plate 

(HWP) in the path. The other one passes directly on to the polarizing beam splitter PBS. The 

Figure 6.6: Schematic setup for the optical implementation of the ping-pong-coding protocol.
PBS denotes polarizing beam splitters, BSA the district for the Bell state analysis, HWP half
wave plate, and BBO a beta- Barium-Borate crystal.

Figure 6.7: The experimental setup of the ping-pong protocol.



Chapter 7

Summary and Outlook

The guiding line through this book was the encoding and transmission of information
through a quantum channel. Coding is a necessary element for the transmission of in-
formation: The source message has to be translated into a sequence of symbols which is
compatible with the physical properties of the channel. In the quantum case the channel
is a compound quantum system whose state can be manipulated by the sender and read
out by the receiver. The resources which are needed to encode a particular message into
a channel state yields a measure for the information content of the message. Reduc-
ing these resources on average for a given ensemble of source messages is the task of
compression. Finding a clever way to make the information sensitive to eavesdropping
is the task of quantum cryptography. We have studied several ways to compress mes-
sages with or without loss of information. Lossless compression requires variable-length
coding which is a new task to quantum information theory. Communicating a message
directly while providing security against eavesdropping is also a new task. This book
has addressed these tasks and has therefore hopefully enriched the scientific discussion
in the field of quantum information theory. In the following let us briefly summarize the
single chapters of the book.

Chapter 1: Classical Information
The basic concepts of classical information theory were reviewed. The notions
of code, message, channel and information were introduced and discussed, also
some important elements of probability theory were presented and related to the
theory of communication. The idea of compression was outlined and illustrated
by a discussion of Shannon’s source coding theorem. It was explained why lossless
compression is only possible by use of variable-length codes.

Chapter 2: Quantum Information
The axiomatic foundations of classical and quantum mechanics were presented in
a compact version so that the analogies become clear. The focus was then put
on quantum theory, where the notions of pure and mixed state, of entanglement
and measurement have been clarified. It was shown how the theory of quantum
channels is connected to the theory of quantum measurement. The qubit as
the elementary unit of quantum information was introduced and some theoretical
background was given which is very helpful for the mathematical treatment of
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qubit systems. Quantum messages were defined in close analogy to the classical
case, which includes the extension of the standard concept of block messages to
that of variable-length messages. The length operator has been defined and its
relation to the information content of a message has been discussed. The concept
of a quantum code has been introduced and illustrated by explicit examples. In
particular some ideas how to realize variable-length message spaces have been
proposed and discussed.

Chapter 3: Concepts of Quantum Data Compression
The idea of quantum data compression was explained and illustrated by the Schu-
macher compression scheme, which is a lossy block compression scheme.

Chapter 4: Lossless Compression
In analogy to the classical case the concept of variable-length coding was applied
to obtain a compression scheme which reduces the size of quantum messages with-
out any loss of information. Some theorems were given concerning the properties
of certain compression strategies. In particular it has been shown that it is impos-
sible to compress an unknown quantum message without loss of information. It
was also pointed out that quantum prefix codes are not very useful in the context
of lossless quantum data compression. The main idea of a successful compres-
sion scheme was outlined, which makes use of a classical side-channel to store
length information about the encoded messages. By means of this side-channel
it becomes possible to reduce the quantum resources below the von-Neumann
entropy of the source message ensemble. It was shown that if the resources of
the classical side-channel are additionally considered, then the total size of the
compressed message is bounded from below by the von-Neumann entropy of the
source message ensemble. This statement represents an anologue to Shannon’s
noiseless coding theorem for lossless codes. An explicit compression protocol has
been given and evaluated for a sample message ensemble.

Chapter 5: Classical Cryptography
The concepts of classical cryptography were reviewed and some basic methods,
in particular the private-key and public-key cryptosystems, were discussed. The
notion of perfect security was explained and illustrated by the Vernam cipher.

Chapter 6: Quantum Cryptography
The basic idea of quantum cryptography was explained and opposed against the
basic idea of classical cryptography. While classical cryptography is based on the
mathematical properties of suitable encoding functions, quantum cryptography is
based on the physical properties of suitable quantum channels. In order to illus-
trate this concept, the BB84 protocol was discussed, which is a non-deterministic
protocol providing the distribution of a secret random key between two parties.
In contrast to that, a deterministic protocol was presented which can be used to
communicate a message directly in a secure manner. The security of this so-called
“ping-pong protocol” against arbitrary eavesdropping attacks has been shown for
the case of a perfect quantum channel. It remains an open task to prove the se-
curity also for the case of an imperfect quantum channel. Two recently published
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attack schemes on the ping-pong protocol were discussed and it was pointed out
that none of them represents a serious threat to the security of the protocol. Lastly,
the experimental realization of the ping-pong protocol was briefly discussed, also
mentioning the collaboration with an experimental group in Potsdam.

It could be interesting to combine lossless quantum compression with quantum cryptog-
raphy. By combining the methods of quantum cryptography with the methods of lossless
compression, the efficiency of secure data transfer could possibly be increased. One also
should investigate how the framework of variable-length messages applies to quantum
computation, since the data stored in the register of a quantum computer could also be
regarded as a variable-length quantum message. Furthermore, the fact that the Fock
space is used for the representation of variable-length messages suggests that it might
be advantageous to apply the techniques of second quantization here. This idea has
recently been followed by Rallan and Vedral in [47] and it offers a lot of interesting
possibilities.
Concerning the ping-pong protocol the next important thing is certainly to find a rigorous
security proof for the case of imperfect quantum channels. The work of several authors
on attacking and refining the protocol feeds the hope that also for imperfect channels
the security can be shown in general. It is also interesting to follow the experimental
progress in realizing the protocol. Based on these experiences it might be possible to
envisage a future commercial application of the ping-pong protocol, just as it has already
become true for the BB84.
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