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The idea of Shannon’s famous source coding theorem
[1] is to encode only typical messages. Since the typical
messages form a tiny subset of all possible messages, we
need less resources to encode them. We will show that
the probability for the occurence of non-typical strings
tends to zero in the limit of large message lengths. Thus
we have the paradoxical situation that although we “for-
get” to encode most messages, we loose no information
in the limit of very long strings. In fact, we make use of
redundancy, i.e. we do not encode “unnecessary” infor-
mation represented by strings which almost never occur.
Recall that a random message of length N is a string
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FIG. 1: Lossy coding.

x = x1---xy of letters, which are independently drawn
from an alphabet A = {a1,...,ax} with a priori proba-
bilities

plag) =pr € (0,1], k=1,...,K (1)
where )", pr = 1. Each given string « of a random mes-
sage is an instance or realization of the message ensemble
X = X1 -+ Xy, where each random letter X, is identical
to a fixed letter ensemble X,

X,=X, n=1,...,N. (2)
A particular message * = z1-- -z appears with the
probability

which expresses the fact that the letters are statistically
independent from each other.
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Now consider a very long message x. Typically, the let-
ter aj will appear with the frequency Ny ~ Npx. Hence,
the probability of such typical message is roughly

K
. Nopy
p(@) ~ iy =p1t it = [ e (4)
k=1

We see that typical messages are uniformly distributed
by ptyp. This indicates that the set T of typical messages
has the size

1

Ptyp

|| ~ ()

If we encode each member of T by a binary string we
need

K

Iy = log|T| = —NZpklogpk =NH(X), (6)
k=1

bits, where H(X) is the Shannon entropy of the letter en-
semble. Thus for very long messages the average number
of bits per letter reads

1

1
v = H(X). (7)

This is Shannon’s source coding theorem in a nutshell.
Now let us get a bit more into detail. In order to rigor-
ously prove the theorem we need the concept of a random
variable and the law of large numbers. Given the letter
ensemble X, the function f : A — R defines a discrete,
real random variable. The realizations of f(X) are the
real numbers f(x),z € A. The average of f(X) is defined
as

K
JEO) = p@) f@) = Y pi fla), (8)
k=1

z€A

and the variance is given by

A?f(X) = (f2(X)) = (F(X))*. 9)

For the sequence f(X) = f(X1),..., f(Xn) we define its
arithmetic average as

1 N

n=1

which is also a random variable. Since the X,, are iden-
tical copies of the letter ensemble X, the average of A is
equal to the average of f(X),

N
) = & U =0y



and the variance of A reads

AA = (A%) —(4) (12)
- ];nzmwxn)f(xm»

];;n<f<xn>><f<xm>> (13)

- ];;{u%x — (XY (19)

- %AQf(X). (15)

The relative standard deviation of A yields

A1 (AFX)
@~ I <<f(X)>> ‘ 16)

Concluding, in the limit of large N the arithmetic average
of the sequence f(X) and the ensemble average of f(X)
coincide. This is the law of large numbers. It is respon-
sible for the validity of statistical experiments. Without
this law, we could never verify statistical properties of
a system by performing many experiments. In partic-
ular, quantum mechanics would be free of any physical
meaning.

Let us reformulate the law of large numbers in the €, §-
language. For 6 > 0 we define the typical set T of a ran-
dom sequence X as the set of realizations € = x1 - TN
such that

FOO) =0< =3 flon) < (F) +5. ()

The law of large numbers implies that for every e¢,d > 0
there is a natural number Ny, such that for all N > Ny
the total probability of all typical sequences fulfills

Pr=>Y plx)>1-c (18)
xcT

The total probability Pr represents the probability for a
randomly chosen sequence x to lie in the typical set T.
Now consider the special random variable

f(X) = —logp(X). (19)

The average of f(X) equals the Shannon entropy of the
ensemble X,

)logp(z) = H(X). (20)

=-> e

zeA

The typical set now contains all messages & whose prob-
ability fulfills

N
Z ogp(zy) < H 46, (21)

or equivalently
2~ NI+ < p(ar) < 27 NUH=0), (22)

where H = H(X). By the law of large numbers, the
probability for a randomly drawn message  to be a mem-

ber of T reads
Pr= Z p(x
xzeT

)>1—e (23)

If we encode only typical sequences, the probability of
error

P.,.=1—Pr<e (24)

can be made arbitrarily small by choosing N large
enough. Now let us determine how many typical se-
quences there are. The lefthand side of (22) gives

p(e) > 27 NI (25)

&> pl@) > [T]27VH), (26)
xzeT

The righthand side of (22) gives

plx) < 27N (27)

&Y plx) < |T|27NHEZ), (28)
xeT

which yields together with (23)
7|2~ NUH=9 > 1 _ (29)
& [T] = (1- )2N (=0, (30)

Relations (28) and (30
relation

) can be combined into the crucial

(1 — ) 2NWH=0) < || < QN(HF9), (31)

For N — oo we can choose ¢,§ = 0 and obtain the desired
expression

7| — 2N, (32)

thus we need Iy — NH(X) bits to encode the message.
Equivalently, the information content per letter reads I =
H(X) bits. Finally, let us investigate if we can further
improve the compression. Relation (30) gives a lower
bound for the size of the typical set. Let us compress
below H bits per letter by fixing some ¢ > 0 and encode
only sequences that lie in a “subtypical set” T C T whose
size reads

|T/| < (1 _ 6)2N(H757e') < 2N(H7§76'). (33)
The righthand side of (22) states that the probability of
a typical sequence is bounded from above by

P(E) < Pag = 27 VHO, (34)



If we encode only the typical sequences in the subtypical
set T, the probability that a sequence is in T” fulfills

Pr = Z p(z) (35)
xeT’

< T'| - Py = 2V 07D 2= NUH=0) (36

=9 N¢, (37)

Because € > 0, the probability of a successful encoding

goes to 0 for N — oo,

PT/ — O (38)

Concluding, if we compress the messages below NH(X)
bits, we are not able to encode all typical messages and
for N — oo we will loose all information. A good review
on the issue can also be found in [2, 3].
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