
1 Abstract Scattering Theory

1.1 Time and energy picture

Scattering theory is mostly introduced in the time picture where one has to deal with differential
equations and boundary conditions. In the energy picture, these equations become simple
algebraic equations for operators. The connection between time and energy picture is given
by the Fourier transform

f(t) =
1

2π~

∫
dE e−

i
~ Etf̃(E) (1)

f̃(E) =
∫
dt e

i
~ Etf(t). (2)

The main actor in the time picture is the time evolution operator or propagator

Û(t) = e−
i
~ Ĥt, (3)

because the time evolution of any state, who is at time t = 0 in the state |ψ〉, reads

|ψ(t)〉 = Û(t)|ψ〉. (4)

Hence, all we have to know is the explicit form of Û(t). In the energy picture, we have to look
for the Fourier transform of Û(t). However, the operator Û(t) cannot be Fourier transformed,
because it does not “converge”. In order to accomplish a transformation, we introduce retarded
and advanced propagators

U±(t) := ±θ(±t) e−
i
~ Ht e∓εt, (5)

where θ is the Heaviside step function and ε→ 0. The retarded propagator cares for the time
evolution towards the future, while the advanced propagator evolves for the past. In most
situations we are only interested in the future evolution, so the retarded propagator,

Û+(t) = θ(t)e−
i
~ (Ĥ−iε)t (6)

is more useful to us. Anyway, we decompose Û(t) along

Û(t) = Û+(t) + Û−(t), (7)

and try to Fourier transform both parts separately. Let |E′〉 be an eigenvector of Ĥ, then∫
dt e

i
~ EtÛ+(t)|E′〉 =

∫ ∞

0
dt e−

i
~ (E′−E−iε)t|E′〉 (8)

=
[ ~
−i(E′ − E − iε)

e−
i
~ (E′−E−iε)t

]∞
t=0

(9)

= i~
1

E − E′ + iε
|E′〉. (10)
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Analoguously, we have ∫
dt e

i
~ EtÛ−(t)|E′〉 = −i~ 1

E − E′ − iε
|E′〉. (11)

Since the |E′〉 form a complete basis we have∫
dt e

i
~ EtÛ±(t) = ±i~ R̂±(E), (12)

or ∫
dt e

i
~ EtÛ(t) = i~

{
R̂+(E)− R̂−(E)

}
, (13)

where

R̂±(E) :=
1

E − Ĥ ± iε
(14)

is the retarded and advanced Green operator, respectively. The Green operators are the analytic
continuations of the so-called resolvent of Ĥ,

R̂(z) =
1

z − Ĥ
, (15)

with R̂±(E) = R̂(E ± iε). Conversely, we have

Û(t) =
i

2π

∫
dE e−

i
~ Et

{
R̂+(E)− R̂−(E)

}
, (16)

which can be calculated using the residue theorem. So the Green operator is the Fourier
transform of the time evolution operator, such that we can simply switch between time and
energy picture.

1.2 Spectral decomposition using the resolvent

Since the resolvent is analytic except on the spectrum of Ĥ, both analytic continuations R±(E)
coincide here, R+(E) = R−(E), so the integral vanishes everywhere except on the spectrum
σ. Assume that |E′〉 is an eigenvector to the (discrete or continuous) eigenvalue E′. Then

R±(E)|E′〉 =
1

E − E′ ± iε
|E′〉 (17)

=
{

PE′

E − E′
∓ iπδ(E − E′)

}
|E′〉, (18)

where PE′ is the principal value distribution, defined by∫
dxPx0f(x) :=

∫ x0−ε

−∞
dx f(x) +

∫ ∞

x0+ε
dx f(x). (19)

Hence, we have {
R̂+(E)− R̂−(E)

}
|E′〉 = −2πiδ(E − E′)|E′〉. (20)
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Distinguishing between discrete and continuous eigenvalues, we arrive at the representation

i

2π

{
R+(E)−R−(E)

}
=

∑
n

δ(E − En)|En〉〈En|+ ρ(E)|E〉〈E|, (21)

where ρ(E) is the energy density vanishing outside the continuous spectrum σc of Ĥ,

ρ(E) = 0 ∀E /∈ σc. (22)

The continuous energy eigenstates are normalized by

〈E|E′〉 =
1

ρ(E)
δ(E − E′). (23)

which finally gives us a spectral decomposition of unity expressed in terms of the resolvent,

i

2π

∫
dE

{
R+(E)−R−(E)

}
=

∑
n

|En〉〈En|+
∫

σc

dE ρ(E)|E〉〈E| = 1. (24)

Note that we have not considered degeneracies up to now.

1.3 Scattering theory

While in the time picture we have to solve differential equations with boundary conditions,
in the energy picture we have to solve eigenvalue equations and do some operator algebra.
Scattering theory looks much simpler in the energy picture, so we will go for it now.
In the energy picture, the aim is to find the spectral decomposition (eigenvalues and eigenvec-
tors) of the total Hamiltonian

Ĥ = Ĥ0 + V̂ , (25)

where Ĥ0 is the free Hamiltonian and V̂ is some perturbation, often parametrized by a per-
turbation parameter λ, such that V̂ 7→ λV̂ . Scattering theory is nothing but a special case of
perturbation theory, with the free Hamiltonian Ĥ0 given by

Ĥ0 =
~2

2m
k̂

2
, (26)

and V̂ being called the scattering potential. The spectral decomposition of the free Hamiltonian
is known,

Ĥ0 |E0〉 = E |E0〉. (27)

The eigenvector |E0〉 is not unique because the energies are all degenerate,

E =
~2

2m
k2, (28)

i.e. |E0〉 can be any of the vectors |k〉 with k := |k| =
√

2mE/~. Hence, we switch to the
momentum picture,

|E0〉 7→ |k〉 (29)∫
dE ρ(E) 7→

∫
d3k. (30)

E 7→ Ek ≡
~2

2m
k2. (31)
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1.4 Bound states

Rewriting the eigenvalue equation of H0,

Ĥ0 |k〉 = Ek |k〉 ⇔ (Ek − Ĥ0)|k〉 = |ø〉, (32)

where |ø〉 is the null vector, we see that the eigenvalues Ek of Ĥ0 are just the points where
the operator (Ek − Ĥ0) is not invertible. In other words: The eigenvalues are those points
where the free resolvent,

R̂0(z) :=
1

z − Ĥ0

(33)

as a function of the complex number z, is not defined. Anywhere else, the resolvent is an
operator-valued analytic function of z. The spectrum of H0 is purely continuous and is given
by the positive semi-axis [0,∞). This defines a cut in the complex plane (see Fig. ??). Now

�

Figure 1: The spectrum of H0, where the free resolvent R0(z) is not defined.

consider the total resolvent

R̂(z) :=
1

z − Ĥ
. (34)

Also here, the eigenvalues of the total Hamiltonian are those points where R̂(z) is not defined.
There might be continuous eigenvalues as well as discrete eigenvalues. A mathematical theorem
states that (under certain quite general conditions for V̂ ) the continuous spectrum of Ĥ is not
affected by V̂ . Thus, the continuous spectrum σc is still [0,∞). Any new discrete eigenvalues
appearing embedded in the continuous spectrum are instable (discrete resonance states, only
appearing on a countable set of perturbation strengths λ1, λ2, . . .), so the stable discrete
spectrum σd must be negative, corresponding to bound states (see Fig.??). Denoting the
bound states with |En〉, we have

Ĥ|En〉 = En|En〉. (35)

The bound states can be constructed with the help of the resolvent. The discrete eigenvalues
En of Ĥ are the poles of the resolvent R̂(z). Let |φn〉 be a Hilbert state such that the function

Gn(z) := 〈φn|R̂(z)|φn〉 (36)
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Figure 2: The spectrum of H, with bound states corresponding to negative discrete eigenvalues.

has a pole at z = En. Then the state

|E±n 〉 := α
±iε

En − Ĥ ± iε
|φn〉 (37)

is an eigenstate of Ĥ to the eigenvalue En, where α is a normalization constant and ε → 0.
In case of stable bound states the pole is isolated and

|E+
n 〉 = |E−n 〉 ≡ |En〉. (38)

Let us only consider stable bound states in the following.

1.5 Møller operators

The resolvent can be used to construct eigenvectors. One can show that to each continuous
eigenvalue Ek there are two different eigenvectors,

Ĥ|E±(k)〉 = Ek|E±(k)〉, (39)

called the retarded and the advanced solution, given by

|E±(k)〉 = ±iεR(Ek ± iε)|k〉

=
±iε

Ek − Ĥ ± iε
|k〉, (40)

with ε → 0 understood as usual. The retarded solution corresponds to an outgoing wave
and is physically more comprehensive than the advanced solution, which correspond to an
incoming wave. However, both solutions can equivalently (but not simultaneously!) be used
in the spectral decomposition. Together with the bound states, we arrive at the spectral
decomposition

1 =
∑

n

|En〉〈En|︸ ︷︷ ︸
1d

+
∫
d3k |E±(k)〉〈E±(k)|︸ ︷︷ ︸

1c

, (41)
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where 1d and 1c are unities on the Hilbert space spanned by the discrete and the continuous
eigenstates of Ĥ, thus

H = Hd ⊕Hc. (42)

The operators that map the free states |k〉 onto the retarded or advanced continuous eigen-
states |E±(k)〉 are known as the Møller operators

Ω̂±|k〉 := |E±(k)〉. (43)

Hence, the Møller operators read

Ω̂± =
∫
d3k |E±(k)〉〈k|. (44)

So the Møller operators are almost unitary :

Ω̂†±Ω̂± =
∫
d3k

∫
d3k′ |k〉〈E±(k)|E±(k′)〉〈k′| (45)

= 1, (46)

but

Ω̂±Ω̂†± =
∫
d3k

∫
d3k′ |E±(k)〉〈k|k′〉〈E±(k′)| (47)

=
∫
d3k |E±(k)〉〈E±(k)| = 1c, (48)

which is only the unity on the subspace Hc spanned by the continuous eigenvectors. If there
were no bound states, the Møller operators would be unitary.

1.6 Lippmann-Schwinger equation and Born approximation

From now on we restrict to retarded solutions. Equation (??) is not yet really helpful as it
involves the operator R̂(z), whose spectral decomposition is unknown. Luckily, there is the
very important second resolvent identity, stating

R̂(z) = R̂0(z) + R̂0(z)V̂ R̂(z). (49)

If we insert (??) into (??), we get

|E+(k)〉 = iε
{
R̂0(Ek + iε) + R̂0(Ek + iε)V̂ R̂(Ek + iε)

}
|k〉 (50)

=
iε

Ek − Ĥ0 + iε
|k〉+

1
Ek − Ĥ0 + iε

V̂ iεR̂(Ek + iε)|k〉 (51)

Using (??) this gives the Lippmann-Schwinger-equation

|E+(k)〉 = |k〉+
1

Ek − Ĥ0 + iε
V̂ |E+(k)〉. (52)
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In terms of Møller operators it reads

Ω̂+|k〉 =
{
1+

1
Ek − Ĥ0 + iε

V̂ Ω̂+

}
|k〉. (53)

Note that since the operator on the righthand side also involves k, one cannot generalize to
the entire Hilbert space, i.e.

Ω̂+ 6= 1+
1

Ek − Ĥ0 + iε
V̂ Ω̂+. (54)

However, one can use (??) without getting into trouble. Now we insert the unity decomposed
in |k〉, yielding

|E+(k)〉 = |k〉+
∫
d3k′

1
Ek − Ek′ + iε

〈k′|V̂ |E+(k)〉 |k′〉. (55)

Thus, in position representation we have

√
2π

3〈x|E+(k)〉 = eikx +
∫
d3k′

eik
′x

Ek − Ek′ + iε
〈k′|V̂ |E+(k)〉. (56)

The term 〈k′|V̂ |E+(k)〉 is known as the scattering amplitude:

f(k,k′) := −4π2m

~2
〈k′|V̂ |E+(k)〉, (57)

and its modulus square as the differential cross section:

dσ

dΩ
:= |f(k,k′)|2. (58)

Equation (??) does not help very much, because it is an implicit equation. However, it can be
iterated, giving the Born series

|E+(k)〉 =
∞∑

j=0

{ 1
Ek − Ĥ0 + iε

V̂
}j
|k〉. (59)

As a series in powers of V̂ , they are perturbation expansions. Cutting the series in first order
gives the first Born approximation

|E+(k)〉 ≈ |k〉+
1

Ek − Ĥ0 + iε
V̂ |k〉 (60)

for the energy eigenstate. Thus, in first Born approximation we have for the scattering ampli-
tude

f(k,k′) ≈ −4π2m

~2
〈k′|V̂ |k〉, (61)
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and for the approximate eigenstate

|E+(k)〉 ≈ |k〉+
∫
d3k′

1
~2k2

2m − ~2k′2

2m + iε
〈k′|V̂ |k〉 |k′〉 (62)

Changing to polar coordinates and considering the pole at k = k′ + iε in the upper half-plane,
we can integrate the above expression using the residue theorem, which gives

Ek(x) ≈ eikx +
eikx

x
f(k′,k), (63)

where Ek(x) :=
√

2π
3〈x|E+(k)〉. So the scattered wave is a superposition of the free wave

eikx and an outgoing spherical wave eikx decreasing with f(k′,k)/x. Just in order to illustrate,
take the advanced solution,

|E−(k)〉 ≈ |k〉+
1

Ek − Ĥ0 − iε
V̂ |k〉. (64)

The pole is now in the upper half-plane at k = k′ − iε, which would lead to the amplitude

Ek(x) ≈ eikx − e−ikx

x
f(k′,k), (65)

representing a free wave plus an incoming spherical wave e−ikx, which is physical nonsense.

1.7 The T-Matrix

The scattering amplitude (??) can be regarded as the matrix element of the so-called Transfer
matrix or T-Matrix :

f(k′,k) =: −4π2m

~2
〈k′|T̂ |k〉, (66)

or, by comparing with (??),
T̂ |k〉 := V̂ |E+(k)〉, (67)

or, in terms of Møller operators,
T̂ := V̂ Ω̂+. (68)

Multiplying (??) from the left with V̂ , we arrive at the Lippmann-Schwinger-equation for the
T-Matrix.

T̂ |k〉 =
{
V̂ + V̂

1
Ek − Ĥ0 + iε

T̂
}
|k〉. (69)

Unfortunately, the operator on the righthand side involves k, so one cannot generalize T̂ to
the entire Hilbert space,

T̂ 6= V̂ + V̂
1

Ek − Ĥ0 + iε
T̂ . (70)
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Rather, one should use (??) instead, whose corresponding Born series reads

T̂ |k〉 =
∞∑

j=0

{
V̂

1
Ek − Ĥ0 + iε

}j
V̂ |k〉. (71)

So in first Born approximation the T-Matrix simply coincides with the scattering potential,

T̂ ≈ V̂ . (72)

1.8 The S-Matrix

The retarded and advanced eigenstates |ψ±(k)〉 can equivalently be used in the unity decom-
position, so they cannot be linearly independent. Indeed, we have

|E+(k)〉 = {1d + 1c}|E+(k)〉 = 1c |E+(k)〉 (73)

=
∫
d3k′ |E−(k′)〉〈E−(k′)|E+(k)〉 (74)

=
∫
d3k S(k′,k)|E−(k′)〉, (75)

where
S(k′,k) = 〈k′|Ŝ|k〉 = 〈E−(k′)|E+(k)〉 (76)

are the matrix elements of the so-called scattering matrix or S-Matrix. In momentum decom-
position, the S-Matrix reads

Ŝ =
∫
d3k

∫
d3k′S(k′,k)|k′〉〈k| (77)

=
∫
d3k

∫
d3k′〈E−(k′)|E+(k)〉|k′〉〈k| (78)

=
∫
d3k

∫
d3k′〈k′|Ω̂†−Ω̂+|k〉|k′〉〈k|, (79)

hence
Ŝ = Ω̂†−Ω̂+. (80)

So what is the use of the S-Matrix? Consider some incoming state |ψin〉 with the wave function
ψin(k) := 〈k|ψin〉. Now we apply the S-Matrix to it and find

Ŝ|ψin〉 =
∫
d3k

∫
d3k′ S(k′,k)ψin(k)|k′〉 (81)

=
∫
d3k′ψout(k′)|k′〉, (82)

where

ψout(k′) :=
∫
d3k S(k′,k)ψin(k), (83)
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is the wave function of some other state, which we call the outgoing state. Hence, the S-Matrix
maps incoming states to the outgoing states:

Ŝ|ψin〉 = |ψout〉. (84)

Now we can invent any names we want, the physical picture behind is the following. In the
far past, the particle is a plane wave |ψin〉 = |k〉, which is an eigenstate of Ĥ0 with energy
Ek. At time t = 0, the particle enters a small interaction region, the realm of the scattering
potential V̂ . Here it transforms into an eigenstate |E+(k)〉 of the full Hamiltonian Ĥ to the
same energy Ek. The particle leaves the interaction region and in the far future it will be in
a free state |ψout〉 = |k′〉 with |k′| = |k|, which is another eigenstate of Ĥ0 of still the same
energy Ek′ = Ek. The latter transition is the time reversed version of the former, hence here
we must deal with the advanced eigenvector |E−(k)〉. The total process reads

|k〉 → |E+(k)〉 → |E−(k′)〉 → |k′〉 (85)

and is depicted in Fig. ??. By the superposition principle we can compose these plane waves
into a wave package, which then represents a truly physical state. The physical interpretation
of the scattering process, though, remains the same. In short: The matrix elements S(k′,k)
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Figure 3: The scattering process.

give the probability amplitude that an incoming state |k〉 is scattered onto an outgoing state
|k′〉:

|k〉 S(k′,k)−→ |k′〉. (86)
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