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Abstract

Using recent recurrent network architecture based on the reservoir computing
approach, we propose and numerically simulate a model that is focused on the
aspects of a flexible motor memory for the storage of elementary movement
patterns into the synaptic weights of a neural network, so that the patterns
can be retrieved at any time by simple static commands. The resulting mo-
tor memory is flexible in that it is capable to continuously modulate the
stored patterns. The modulation consists in an approximately linear inter-
and extrapolation, generating a large space of possible movements that have
not been learned before. A recurrent network of thousand neurons is trained
in a manner that corresponds to a realistic exercising scenario, with experi-
mentally measured muscular activations and with kinetic data representing
proprioceptive feedback. The network is “self-active” in that it maintains
recurrent flow of activation even in the absence of input, a feature that re-
sembles the “resting-state activity” found in the human and animal brain.
The model involves the concept of “neural outsourcing” which amounts to
the permanent shifting of computational load from higher to lower-level neu-
ral structures, which might help to explain why humans are able to execute
learned skills in a fluent and flexible manner without the need for attention
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to the details of the movement.
Keywords: Neural Networks, Motor memory, Motor Control, Motor
Learning, Reservoir Computing

1. Introduction1

Deenah the dancer works on a new choreography. She closes her eyes2

and concentrates on the moves she is going to perform. When she opens her3

eyes again, she performs her first slow moves. From time to time she takes4

a look at the large mirror on the wall and corrects a posture or stops to5

repeat a particular movement. Deenah teaches herself the new choreography6

by executing it over and over. At the end of the day she performs hundreds7

of delicate movements by heart, in correct order, fast, fluent and filled with8

just the right amount of emotional expression, as though her body moved by9

itself.10

This is just an imagined scenario, but it exemplifies in a paradigmatic11

manner a remarkable phenomenon: When we repeat movements over and12

over, even if they are highly complicated and initially attract all of our at-13

tention, then the movements will become more and more fluent and precise,14

and eventually we are able to perform them without paying attention to15

the details. Although we still perform the movements deliberately, there is16

a sense in which they have become automatic, but not so far as to merely17

reproducing the exact learned movements in a robotic fashion. Rather, we18

are able to continuously recombine and modulate the learned movements in19

a flexible manner, so that they fit to our intentions and to the demands of20

the environment.21

Theories of motor learning rely on the concept of a motor memory. How22

does the brain, and probably also the spinal chord, store and recall move-23

ments or, more generally, dynamical information? There is a large amount24

of literature on proposed solutions to the issue of storing and retrieving time-25

sensitive information in a biological system, and the review of them all would26

go beyond the scope of this paper. Many of the proposed models are designed27

to deal with the problem of how a set of temporally ordered discrete “items”28

is learned and recalled (Atkinson & Shiffrin, 1968; Grossberg, 1978; Gross-29

berg & Paine, 2000; Rhodes et al., 2004; Grossberg & Pearson, 2008). In the30

case of serial recall, the temporal order of the items needs to be preserved,31

while in the case of free recall the temporal order needs not be preserved.32
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There are models for short-term and long-term memory, and they qualita-33

tively capture the phenomenon that, for example, it is easier to recall items34

from the beginning and the end of a learned sequence (primacy effect and35

recency effect, respectively). A powerful and physiologically plausible model36

that realizes both serial and free recall is the LIST PARSE model proposed37

by Grossberg & Pearson (2008), which encodes a discrete temporal sequence38

by “an analog spatial pattern of activation that evolves in parallel across a39

network of content-adressable cells” (ibid., p. 683).40

Moreover, there is a conception in motor learning theory called motor41

chunking (Book, 1908; Verwey & Dronkert, 1996; Grossberg & Pearson, 2008;42

Wymbs et al., 2012). The idea is that movements are internally segregated43

into chunks which are stored and recalled individually to improve the effi-44

ciency of memory usage and information processing. The motor chunks act45

like words of a vocabulary composed of individual motor primitives as letters,46

and their combination results in a broad range of possible movements. One47

part of the motor system would parse every planned movement for primitives,48

while another part would concatenate these primitives into chunks, and both49

processes complement each other to achieve optimal efficiency (Wymbs et al.,50

2012).51

Most models of sequential learning focus on the storage and retrieval of52

a discrete sequence of items, whereas a movement, on the other hand, is53

a continuous dynamical function. Even given that movements are parsed54

into sequences of chunks and then stored, the question remains how the55

individual chunks are stored as continuous dynamical functions within the56

nervous system. In the present study we would like to address this latter57

question, so our proposed model is compatible with any model of a discrete58

sequential memory, as the former would represent a supplement to the latter.59

Specifically, we wish to put forward the concept of a flexible motor memory,60

that is, a neural mechanism to store, recall and modulate elementary motor61

primitives for the generation of complex movements. The process of storing62

motor primitives in the nervous system, according to our view, is realized63

during the repeated execution of movements, and it involves a higher-level64

system that trains a lower-level system to learn individual movement patterns65

as motor primitives, so that after learning the higher-level system may recall,66

combine and modulate the learned patterns from the lower-level system,67

resulting in a broad range of possible movements that considerably exceeds68

the learned range.69

We implement these theoretical concepts in a numerical model that relies70
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on recent recurrent network architecture exploiting certain novel and unique71

features outlined below. The intention of our study is to investigate the bi-72

ological relevance of these features for the computations that occur in the73

central nervous system. To better understand the underlying principles, the74

precise anatomy of individual neuronal structures has to be simplified and75

idealized. The resulting model involves an idealized network that is trained76

with experimentally measured electromyographic (EMG) data representing77

the muscular activations of a biological system. We will discuss some inter-78

esting aspects of the results of our simulations in the light of their possible79

functional role and their physiological plausibility.80

2. Theoretical concepts81

We conceptualize that lower-level neural structures are enacted by higher-82

level structures for the execution of movement patterns. The lower-level83

structures learn these patterns during their repeated execution, so that even-84

tually the lower-level structures are able to generate the learned patterns by85

themselves in response to drastically reduced abstract commands from the86

higher-level structures. This amounts to a permanent shifting of computa-87

tional load from the higher level to the lower one, a process that we denote88

as neural outsourcing. After the learning, the lower-level structures are able89

to generalize the learned patterns in such a way that they can interpolate90

and extrapolate the learned patterns within and beyond the learned range,91

respectively. As already mentioned, a system that displays such a behavior92

is what we denote as a flexible motor memory. In our model, movement93

patterns in the form of periodic continuous dynamical functions are stored94

in the synaptic weights of a recurrent neural network. This raises the ques-95

tion how dynamical information can possibly be stored into static synaptic96

weights. The key to understanding how this may be possible is to conceive of97

a neural network not as a mere input-output device but rather as a dynam-98

ical system that evolves on its own. In the flexible motor memory that we99

suggest, movements are not stored as fixed “movies” that are merely replayed100

but rather as dynamical properties of a recurrent neural network. When the101

network is trained to respond dynamically in a specific way in the presence102

of a specific static input, then this potentially realizes a flexible memory for103

movement patterns.104

Such a behavior cannot be achieved by a feedforward network, that is, by105

a network where the information flows in only one direction from input to106
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Figure 1: Top: Feedforward network. There are dedicated input and output layers
of neurons with intermediate “hidden” layers of neurons. Bottom: Recurrent net-
work. There are no layers, all neurons may be connected to each other including
themselves, and every neuron can potentially act as input or output.
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output, crossing a set of “hidden” layers (Figure 1). A feedforward network107

is in fact just an input-output device that maps static input to static output,108

x 7→ y, (1)

so that in order to get dynamical output also the input already has to be109

dynamic. Only recurrent networks, that is, networks where every neuron may110

be connected to every other neuron, are capable of mapping static inputs to111

dynamic outputs,112

x 7→ y(t). (2)

This is because recurrent networks have the potential to be self-active, that is,113

they may admit recurrent flows of activation even in the absence of input, a114

feature that strikingly resembles the resting-state activity of the brain (Biswal115

et al., 1995; Laufs et al., 2003; Smith, 2012). Hence, recurrent networks are116

capable of generating dynamical output by themselves, 0 7→ y(t), which117

implies that they are more than just input-output devices. Moreover, these118

networks are capable of mapping dynamic input to static or dynamic output,119

x(t) 7→ y and x(t) 7→ y(t), respectively, which in effect may realize real-time120

temporal pattern recognition and response modulation. Altogether one may121

say that recurrent neural networks are potentially powerful generators of122

complex and flexible dynamical behavior.123

Artificial recurrent neural networks are sometimes used as analytical tools124

to identify and characterize input-output relationships and activity patterns125

of physiological systems (vocal tract: Burrows & Niranjan, 1995; muscle126

activity: Draye et al., 1997, Cheron et al., 2007). However, this is not the127

purpose of our use of an artificial neural network in the present study. Rather,128

we intend the artificial network to serve as a simplified and idealized model129

for a biological network of neurons.130

The notorious problem with recurrent networks is that in general they131

are enormously difficult to train. The training is traditionally done by a nu-132

merical method called error backpropagation (Rumelhart et al., 1985) which133

is physiologically highly implausible and computationally so demanding that134

only small networks (tens of neurons) can be trained on available hardware.135

Only by the advent of reservoir computing it became possible to train much136

bigger recurrent networks (thousands or even hundreds of thousands of neu-137

rons) in reasonable time on available hardware (“echo state networks”: Jaeger,138

2001; “liquid state machines”: Maass et al., 2002; see Lukoševičius & Jaeger,139

2009, for a review). Reservoir networks are numerically much more effi-140
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cient since only the output weights are adapted during the learning process.141

Their unique features and their numerical efficiency make reservoir networks142

ideal for application in motor learning theory, and they have recently been143

used to simulate central pattern generators in robot locomotion (Wyffels &144

Schrauwen, 2009; Jaeger et al., 2012).145

The basic idea of reservoir computing is to conceive of a recurrent network146

not as a fixed program-driven machine but as a continuous dynamical system147

that responds to an input signal similar to how a water surface responds148

to the impact of a stone. The information about the input, such as the149

size and weight of the stone, the velocity and angle of impact, is contained150

in the dynamical response of the water surface. If certain points on the151

surface are read out in an adequate manner, the water can effectively perform152

almost arbitrary “calculations” on these values1. A reservoir, in the sense of153

reservoir computing, consists of a large heap of neurons that are randomly154

connected with each other, and it is only their output weights that define155

the relevant response to the input. Learning takes place while feeding the156

network with slight variations of the target function. The network then157

starts to reverberate the target function, and the output weights are adapted158

so that a temporarily stable resonance state is reached.159

For our model we chose a further development of the reservoir computing160

approach, proposed by Sussillo & Abbott (2009): the FORCE (First-Order161

Reduced and Controlled Error) network architecture (Figure 2). It offers162

two advantages against other types of reservoir networks. First, the learning163

takes place online, that is, the target functions are trained one after the other164

in subsequent “lessons”, whereas the network training algorithms of other165

architectures involve offline learning, that is, they process all input/output166

pairs in parallel and not in sequence. This is not a plausible, yet not even167

a physically possible strategy in the case of motor learning: Humans and168

other biological systems cannot learn more than one movement sequence at169

a time. Second, FORCE networks bring their output close to the target170

from the beginning on, while traditional learning algorithms do so in small171

steps only. For the case of motor learning the latter would mean that the172

initial movements would appear erratic until they slowly become more and173

more targeted. However, humans do obviously not flail around their limbs174

1This has literally been demonstrated by having a bucket of water performing pattern
recognition of spoken words (Fernando & Sojakka, 2003).
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Figure 2: Scheme of the FORCE learning network used in this study. During
learning the output weights are quickly and strongly modified so that the output
closely (but not exactly) matches the target function. The output is fed back,
causing the network to resonate with itself. As learning proceeds, the weight update
rate is minimized so that after successful learning the network generates the target
function even with constant output weights.

erratically when they exercise a particular movement. They start off with175

targeted movements and then improve their performance in terms of fluency,176

speed, and precision (Wolpert et al., 2011). Altogether, the FORCE network177

architecture meets the basic requirements of human motor learning.178

In the present study, we demonstrate another remarkable capacity of the179

FORCE network: Without any modification or optimization of the learning180

process, the network was able to morph, that is, to inter- and extrapolate181

between the learned patterns in an approximately linear fashion. This mor-182

phing capacity of the network might help to explain how to overcome an183

obvious limitation of the human motor system: It is impossible to learn all184

variations of a particular movement. Instead, the system would only have185

to repeatedly execute some particular movement, parts of which would be186

stored as motor primitives and later be morphed into a broad range of new187

movements. In view of the morphing capacities of the network, few discrete188

points in the continuous space of possible movements would suffice to be189

learned by repeated execution, and then the system would be able to freely190

interpolate between them and even extrapolate beyond them. This concep-191
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tion constitutes an extension to the idea of fixed motor programs or program192

schemes to generate a continuum of movements, as for example in the schema193

theory of Schmidt (1975), and it fits well to certain theories of motor control,194

notably the differential learning approach (Schöllhorn, 1999), that postulate195

a benefit of learning variations of a movement pattern instead of learning196

only the exact pattern. For if the system learns variations of a movement197

pattern, it would afterwards be capable of morphing between the variations.198

Lastly, besides muscular activations we also had the network learn a ki-199

netic feature of the generated movement, in this case exemplarily the elbow200

joint angle of the moved arm. The motivation was that if the executive201

system is able to store and recall muscular activation patterns generating202

a particular movement, then it could also simultaneously store and recall203

sensory feedback signals provided by the proprioceptive system during the204

execution of that very movement, similar to an efference copy. These signals205

could later be used as a cheap “as-if-simulation” of the expected sensory con-206

sequences of the movement. In contrast to a full internal simulation, which207

would be very demanding on the neural resources, a simple recall of memory208

traces stemming from the proprioceptive system would be much cheaper and209

can as well be used to predict what it would be like if the movement was210

executed. The so predicted proprioception may then be compared to the ac-211

tual proprioception, which might yield valuable information for higher-level212

systems (e.g. to correct postures or to adapt perception) and also for lower-213

level regulative systems (e.g. to induce pain or to modulate reflexes). The214

joint angle measured by our external camera system during the experiment215

served to represent proprioceptive information. It is relevant to remark that216

in our simulations this “proprioceptive” information was also morphed cor-217

rectly, that is, the predicted joint angle time course changed its frequency in218

accordance to that of the muscular activation patterns. In this sense, thus,219

the network may act as a flexible and computationally cheap simulation en-220

gine to predict the effects of planned movements.221

3. Methods222

3.1. Numerical simulations223

We implemented a FORCE network analog to the one proposed by Sus-224

sillo & Abbott (2009). The differential equations for a network of N reservoir225

neurons receiving a K-dimensional input and yielding an L-dimensional out-226

put are given by227
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τ q̇n(t) = −qn(t) +
K∑
k=1

Inkxk(t) +
N∑

m=1

Mnmrm(t) +
L∑
l=1

Fnlyl(t) (3)

rn(t) = tanh(qn(t)) (4)

yl(t) =
N∑

m=1

Wlmrm(t) (5)

where τ is a global time constant that has been set to τ = 0.01 simulated228

seconds2, n = 1, . . . , N is the index of the network neuron, qn(t) is the internal229

excitation state of the n-th neuron, rn(t) is the output firing rate of the n-230

th neuron with negative rates corresponding to inhibition, xk(t) is the k-th231

component of the input vector x(t), yl(t) is the l-th component of the output232

vector y(t), Mnm is the synaptic weight connecting the m-th with the n-th233

neuron, Ink is the synaptic weight connecting the k-th input with the n-th234

neuron, Fnl is the synaptic weight for the feedback from the l-th output to235

the n-th neuron, Wlj is the synaptic weight connecting the n-th neuron with236

the l-th output. Note that (3) is a nonlinear differential equation because237

of the nonlinearity of the hyperbolic tangent in (4). The hyperbolic tangent238

restricts the output to the interval [−1, 1] in a smooth sigmoid fashion and239

is both numerically efficient to calculate and biologically plausible enough240

within the range of precision considered here; in opting for the hyperbolic241

tangent we follow Sussillo & Abbott (2009), but some other sigmoid function,242

e.g. the logistic function, would also do.243

FORCE networks are non-spiking neural networks, in contrast to other244

variants of reservoir networks such as Liquid State Machines, so only the245

firing rates of the neurons are calculated, which considerably increases com-246

putational efficiency. The differential equations were numerically solved by247

the Euler method,248

qn(t+ δt) = qn(t) + δt · q̇n(t), (6)

with a simulation time step of δt = 0.001 simulated seconds, and a ran-249

dom initial value of qn(0) taken from a zero-centered Gaussian distribu-250

tion with standard deviation of 0.5. Since we have a large recurrent net-251

2Here we follow Sussillo & Abbott (2009). The global time constant τ governs how
fast the system responds to changes. The higher τ , the slower the response and thus the
smoother the system trajectory.
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work described by 1000 coupled nonlinear differential equations, more ad-252

vanced integration methods than the Euler method would result in a drasti-253

cally higher computational demand. The temporal discretization yields time254

steps ti = i · δt , so that temporal integrations are performed by replacing255 ∫
dt f(t)→

∑
i δt f(ti).256

The number N of neurons in the reservoir can and should be rather257

high because it limits the capacity of the network to learn multiple com-258

plex dynamical functions, but it should not be too high to avoid unnecessary259

computational demands. We have set N to 1000 which turned out to be260

an adequate value (see Discussion). The input dimension was set to K = 3261

(this value is more or less arbitrary, but too low a value would compromise262

the separability of input vectors in input space, resulting in a bad morphing263

performance, see below), and the output dimension was set to L = 5 (corre-264

sponding to four muscle activations and one joint angle, see below). Ink and265

Fnl are random matrices with components taken from a uniform distribution266

over the interval [−1, 1]. Mnm is a sparse random matrix3 with a sparseness267

of p = 0.01 and non-zero weight values taken from a zero-centered Gaussian268

distribution with a standard deviation of269

σM =
g√
pN

, (7)

where g governs the strength of the recurrent flow in the reservoir. For g < 1,270

the network activity is damped, and all activity caused by prior input decays271

so that the network returns to a default idle state. Such behavior is one272

of the defining properties of echo state networks (the “echo state property”,273

see Jaeger, 2001, pp 6) and of liquid state machines (the “time invariance”274

and “fading memory” preconditions, see Maass et al., 2002, p 7). On the275

other hand, FORCE networks, like the one we used, potentially exhibit and276

maintain self-activity (in a more general context denoted as “chaotic behav-277

ior”) by allowing g > 1, which is responsible for the capacity of the network278

to generate dynamical output from static or even zero input. Interestingly,279

the number of cycles required to train a network to generate periodic target280

functions drops considerably as a function of g (Sussillo & Abbott, 2009, p281

550), so self-activity in fact yields a benefit for the training performance. If282

3The usage of a sparse matrix Mmn is both numerically more efficient and biologically
more plausible, since in a biological neural network each neuron is only connected to a
proper subset of other neurons (cf. Ioannides, 2007).
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g is too high, however, the training fails to “control the chaos” and learning283

does not succeed any more. For our implementation we chose g = 1.5, which284

is well in the self-active regime but not too far out to push the network out285

of control. The scaling factor 1/
√
pN takes care that the total weight of out-286

going connections per neuron is independent from the number of outgoing287

connections per neuron: There are N neurons in the reservoir, and each neu-288

ron is connected on average with pN other neurons; the sum of all weights of289

outgoing connections per neuron is a random variable whose variance equals290

the sum of the variances of the individual connections, so σ2
tot = pN · σ2

M ,291

and this number is independent of the number pN of outgoing connections292

exactly if σM is chosen to be proportional to 1/
√
pN as in Equation 7.293

The network is trained by injecting a K-dimensional input function x(t),294

an associated L-dimensional target function h(t), and by modifying the295

synaptic weights of the output neurons according to the delta rule296

Wln(t+ ∆t) = Wln(t) + El(t)
N∑

m=1

Plm(t)rm(t), (8)

where ∆t is the learning time step set to ∆t = 2δt, and where El(t) =297

hl(t) − yl(t) is the output error, and where Plm(t) is a running estimate of298

the regularized inverse of the correlation matrix of the output vector, given299

by300

Plm(t+ ∆t) = Plm(t) +

∑
ij Pli(t)ri(t+ ∆t)rj(t+ ∆t)Pjm(t)∑
ij ri(t+ ∆t)Pij(t)rj(t+ ∆t) + 1

, (9)

with the initial condition Plm(0) = 1/α and the regularization constant set301

to α = 1. The update of W realizes the learning process. When learning is302

switched off (during the “validation phase”), the delta rule is no longer ap-303

plied, the matrixW stays constant and the network freely evolves in response304

to the input. Learning took place online, that is, the target functions were305

trained one after the other in subsequent “lessons”. One lesson consisted of306

feeding the network subsequently with the pairs (xi,hi(t)) of input vector307

and its associated target function, for a certain number of periods. If Ti is308

the duration of one period of the target function hi(t), and ni is the num-309

ber of repetitions per lesson, then each lesson took T =
∑

i niTi simulated310

seconds (abbreviated as “sims”). For our calculations there were only two in-311

put/output pairs, the number of repetitions was globally set to n = 6 and the312

number of lessons to 8, so each lesson starts with feeding the pair (x1,h1(t))313
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for 6T1 sims and then feeding the next pair (x2,h2(t)) for 6T2 sims, where314

T1, T2 are the period durations of h1(t),h2(t), respectively. An entire lesson315

thus took T = 6T1 + 6T2 sims. The learning activity was measured by the316

weight update rate defined by317

WUP(t) = ‖Ẇ (t)‖ =
‖W (t)−W (t−∆t)‖

∆t
, (10)

where the matrix norm is defined by ‖A‖ =
√

max(eig(ATA)) with eig(A)318

being the set of eigenvalues of a matrix A. The learning error was measured319

by the distance between output and target (root mean square, RMS) averaged320

over the previous T sims, where T is the duration of one lesson,321

RMS(t) =

√
1

T

∫ t

t−T
dt′ ‖y(t′)− h(t′)‖2, (11)

and where for t < T the constant T in the above formula is replaced by t322

with t = 0 at the beginning of the training phase.323

As for the modulation of the stored movement patterns, we restrict our324

considerations here to the case of a simple linear morphing between stored325

patterns. Other modulations, e.g. nonlinear morphing, are certainly also326

possible and may further enhance the system’s capacity to generate complex327

dynamics. The investigation of such enhanced modulation may be the topic328

of a future study. Here, the morphing took place by first training the network329

with two input/output pairs (x1,h1(t)) and (x2,h2(t)) and then feeding the330

network with the morphed input331

x(λ) = x1 + λ(x2 − x1), (12)

with λ = λ(t) continuously increasing from -0.25 up to 1.25 in 30 sims. All332

simulations and calculations have been carried out using MATLAB 7.11.0.584333

(R2010b) on either a MacBook Pro with 2.5 GHz Intel Core i5 processor and334

4 GB RAM running MacOS 10.6, or on a PC laptop with Intel Core i3-2310M335

CPU 2.1 GHz processor and 3 GB RAM running Windows 7.336

3.2. Experimental data337

The elementary movement patterns were represented by periodic target338

functions that our network had to learn; they have been chosen to corre-339

spond to selected muscle activations and kinetics of a human being who340
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moves one arm up and down. The muscle activations were based on ex-341

perimentally measured surface electromyograms (EMGs) of one healthy and342

physically active male (29 years of age, 2.06 m height, 130 kg body mass,343

left-handed). Bipolar surface EMGs (5-700Hz; Biovision, Wehrheim, Ger-344

many) were taken from four muscles of the left arm that are involved in the345

movement of the elbow joint and that are accessible by surface electrodes:346

m. brachioradialis, m. biceps brachii, m. triceps brachii caput longum and m.347

triceps brachii caput laterale. EMGs were sampled at 2000 Hz (DAQCard-AI-348

16E-4: 12 bit, National Instruments, USA) and preamplified (bipolar 2500349

times). Electrodes were positioned according to international established350

recommendations (Hermens et al., 1999). Disposable Ag–AgCl electrodes351

(H93SG, Arbo R©, Germany) with a circular uptake area of 1 cm diameter352

and an inter-electrode distance of 2.5 cm were used. Prior to electrode ap-353

plication, the skin was shaved and cleaned with a special purification paste354

(EPICONT, Marquette Hellige GmbH Freiburg, Germany). The kinetics of355

the arm were measured with a three camera 3D motion capture system (200356

Hz, Oqus, Qualisys, Gothenburg, Sweden). The arm was marked (reflective357

markers with 18 mm diameter) at the acromion, the elbow joint, and the358

wrist. From this the elbow joint angle was calculated using the Qualisys359

Track Manager. First, the activation of the elbow flexors and elbow exten-360

sors were measured during maximum voluntary contraction (MVC) for ten361

seconds. The subject was standing in an upright position with the elbow362

flexed at about 90◦. Then, cyclic arm movement at three different frequen-363

cies (1 Hz, 1.5 Hz, and 2 Hz) and three different amplitudes (low, mean,364

large) were performed for 30 seconds, respectively. The instances of maxi-365

mum elbow angles were then determined to yield the mean trajectories of366

the elbow kinematics and the EMGs. In a final step, the EMG data were367

downscaled to match the 200 Hz frequency of the kinematic data, then the368

data were centered, rectified, and filtered by a 4th-order zero-phase high-pass369

Butterworth filter with 20 Hz cutoff frequency, all cycles of one period were370

averaged, and lastly windows of 10 samples from the start region and the end371

region were cross-faded into each other to obtain smoothly periodic target372

functions.373
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Figure 3: Training phase of the network. The top box shows the input of the
network, which is an alternating set of three static firing rates. The middle box
shows the output of the network, which corresponds to the muscular activations of
four arm muscles and the joint angle between the upper and lower arm. The target
functions (measured data) are not shown here since at the chosen scale they are
virtually indistinguishable from the network output. By exemplarily zooming in,
the inset shows how close the network output is to the target from the beginning
on. The bottom box shows the learning progress of the network, with the update
rate of the synaptic weights representing the learning activity and the distance
between output and target representing the learning error.
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4. Results374

4.1. Training375

On each run of the training sequence, the network weights were initial-376

ized with random values, as were the initial activation values of the network377

neurons. Each training sequence consisted of a fixed number of repetitions,378

and on almost every run of the training sequence the network was able to379

learn the generation of the target output in response to the training sequence380

to a satisfying degree of accuracy (see Figure 3 for a representative outcome381

of a successful training sequence). FORCE networks closely match their out-382

put to the target almost immediately, so the learning error in terms of the383

average distance between output and target (Equation 11) starts with an384

already small value which further decreases during training. The learning385

activity was measured by the update rate of the output weights of the net-386

work (Equation 10), and these weights are the only ones that are modified387

during learning. As can be seen in Figure 4, the network starts with a rela-388

tively strong learning activity which rapidly decreases during learning. Every389

time the input vector switches, the network responds with a sharp increase390

of learning activity which then rapidly decreases again. As a requirement for391

successful learning we found that the actual values of the components of the392

input vectors turned out to be irrelevant, except that their overall strength393

in terms of their Euclidean norm would have to be modest in order for the394

learning to succeed. We thus chose the strength of the input vectors to be395

equal to unity throughout the simulations. Also, we got best results with396

target functions that remained positive and did not exceed unity, which is397

readily fulfilled by having the EMG data normalized to maximum voluntary398

contraction.399

4.2. Validation400

During the validation phase the learning was switched off, the network401

weights were thus remaining constant and the system freely evolved in re-402

sponse to the input. Since the neuronal activity was randomly initialized, and403

also the time points of the switching between the two different input vectors404

were at random, each run of the validation phase was an independent realiza-405

tion with a different output. If the previous learning phase had successfully406

finished, the network was able to satisfyingly reproduce the learned patterns407

when the corresponding static input was given. In Figure 4 a representative408

output of a validation run is shown. The network behaved like a dynamical409
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Figure 4: Validation phase of the network. The network weights are no longer
modified and the network freely evolves while dynamically responding to the input
signal that is switched between the two learned values at random time points. Here,
only one output function corresponding to the activation of the triceps brachii caput
laterale is exemplarily shown, with a zoomed selection displayed in the inset. It
can be seen that the network acts like a dynamical system that “swings” into the
adequate learned pattern as soon as the input switches. Sometimes this swinging
introduces phase delays which may be compensated on a later swinging (see inset).
The phase delays are due to the training input being constant and thus carrying
no phase information.
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system that responds to piecewise static input and “swings” into the learned410

output pattern when the corresponding static input is given. This “swinging”411

sometimes introduced phase shifts which showed up when the actual network412

output was compared to the target. The phase shifts are due to the control413

input being constant and thus carrying no phase information. To obtain a414

phase-locked output, the control input would have to be designed with a peak415

at the beginning of each cycle during training (Sussillo & Abbott, 2009). The416

phase-shifting behavior, though irrelevant to our considerations here, makes417

it unfavorable to quantify the learning success by the usual RMS measure,418

because it would severely punish phase delays although, in view of the just419

mentioned lack of phase information in the control signal, these delays do not420

constitute an unacceptable deviation from the target function. Altogether,421

after successful training the network was able to generate the correct output422

patterns in response to the randomly switching input, while afflicted with423

the already mentioned occasional phase shifts after input switching.424

4.3. Morphing425

After having successfully learned the output of two sets of dynamical426

functions h1(t),h2(t) in response to two static input vectors x1,x2, respec-427

tively, the network was fed with a morph of the two inputs (Equation 12).428

During a simulation time of 30 sims, the morphing parameter λ was linearly429

increased from −0.25 to 1.25. The output of the network was a nearly linear430

interpolation between the patterns h1(t) and h2(t) during the central time431

interval [5, 25], and a nearly linear extrapolation of the patterns in the re-432

maining two intervals at the start and the end of the simulation (Figure 5). A433

closer inspection showed that several visible features of the learned patterns434

were linearly modulated, in the amplitude domain as well as in the frequency435

domain (Figure 6). The global amplitude was modulated, and so were the436

heights of in-between local peaks of the functions and also the frequency of437

the nearly sinusoidal function corresponding to the joint angle. As for the438

local peaks it is interesting to note that some of them were increased and439

others were decreased, which indicates that the modulation was not just a440

simple global amplification or attenuation.441

The morphing capacity of the network emerged without any modification442

of the algorithm. We generally obtained good morphing results when the443

initial (unmorphed) input vectors were close to each other in terms of their444

Euclidean distance. In order to test the induced hypothesis that the morph-445

ing quality depends on the distance of the initial input vectors, we carried446
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Figure 5: Demonstration of the “morphing” capacity of the network after learning.
Interpolation takes place between the 5th and 25th second, when the morphing
parameter λ of Equation 12 is linearly increased from 0 to 1. Extrapolation takes
place in the orange colored vertical areas, during the first and last five seconds,
where λ is linearly extended below 0 and above 1, respectively. The change of the
input values (upper panel: red, green, blue lines) is hardly visible, because the two
3-dimensional input vectors used for learning are very close to each other in terms
of their Euclidean distance, which turned out to be a necessary requirement for
successful morphing.
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out numerical simulations with different pairs of input vectors of varying dis-447

tance. On each run of the simulation, the two input vectors were chosen from448

a unit sphere in the three-dimensional input space so that their total strength449

remained equal, and their mutual distance was varied by their enclosed angle450

from 0◦ to 180◦; then the network was trained and afterwards the inputs were451

morphed. The morphing success was measured in terms of the root mean452

square (RMS) distance between the estimated frequency evolution of one of453

the network outputs (elbow angle) and the frequency evolution of a “perfect454

morph” obtained by an analytic linear superposition of the corresponding si-455

nusoid target functions, so that a low RMS distance corresponded to a good456

morph. The results showed that the quality of the morph indeed increased457

with decreasing distance between the input vectors, down to a critical value458

(2◦) under which the training, and thus also the morphing, failed (Figure 7).459

Most plausibly, this was because the input vectors became too close to each460

other, so that the network could not discriminate between them any more.461

4.4. Neural activity462

As has already been pointed out by Sussillo & Abbott (2009) in their pre-463

sentation of the FORCE network architecture, the neurons in the reservoir464

show a chaotic spontaneous activity, which is typical for this kind of architec-465

ture because the synaptic weights admit undamped recurrent flows of acti-466

vation even in the absence of input, a feature that distinguishes FORCE net-467

works from other reservoir networks. We denote this feature as self-activity468

to better differentiate it from the more general and potentially misleading469

term of chaotic behavior. While the activity of individual neurons during idle470

input appears erratic and is of a considerably high amplitude, the total net-471

work output is similar to a low-level random noise floor. (See Figure 8 for the472

activity of four randomly selected neurons and one dimension of the network473

output). During training with a constant nonzero control input, the activity474

of the neurons becomes synchronized and yields a total output which is close475

to the periodic target function. After training, when the input is set to zero476

again, the neurons return to erratic activity and the total network output is477

noisy, but this time the amplitude of the output noise is evidently stronger478

and contains strong low-frequent components. As soon as the same constant479

input is applied as during training, the neurons start to synchronize again480

and the network output yields the learned periodic function. It should be481

remarked that we have not trained the network to yield zero output on zero482

input, which would correspond to the situation in the human and animal mo-483
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linear morph of two particular target functions as a function of the distance between
the two normalized input vectors (in angular degrees, see text). For each step on
the x-axis, a numerical simulation was run.

tor system where it is desirable to suppress involuntary random movements.484

Although it is of course possible to train the network this way, we refrained485

from such a procedure to demonstrate what the network would do by itself,486

that is, without special training, in the absence of input. Such a scenario487

mimics periods of idle input in highly interconnected parts of the brain, not488

necessarily only in the motor system.489

While it is not the focus of this study to analyze these phenomena in more490

detail, we believe they are worth reporting and we would suggest to dedicate491

future research on their investigation. A better understanding of this kind492

of behavior, which is characteristic for self-active recurrent networks (and493

for these networks only), may yield insights into the origin and meaning of494

the resting-state activity found in the brains of humans and animals during495

periods of idle tasking (cf. Biswal et al., 1995; Laufs et al., 2003; Mazzoni496

et al., 2007; Smith, 2012).497
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Figure 8: Neural activity of four randomly selected neurons (upper panel), and
one dimension of overall network output (lower panel) during twenty simulated
seconds. In the first five seconds there is no input and no training, so the network
evolves freely, its neurons show erratic resting activity, and the total output is
close to low-level random noise. During subsequent five seconds of training with a
constant input, the neurons synchronize their activity and contribute to a network
output which is close to the periodic target function. After the training and with
idle input, the network evolves freely again, the neurons return to erratic resting
activity, and the total output is noisy, although evidently of higher amplitude and
with low-frequency components. In the final five seconds, when the same constant
input as during training is applied, the network synchronizes again to yield an
output close to the trained periodic function.
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5. Discussion498

Based on recent recurrent network architecture, we have proposed and499

numerically implemented a model for a flexible motor memory that is capable500

of storing elementary movement patterns as motor primitives into the static501

synaptic weights of the network. The model is capable of retrieving the502

stored primitives by simple static commands, and it is moreover capable503

of modulating them by linear inter- and extrapolation. Although we have504

concentrated so far on the linear combination of just two motor primitives, it505

is tempting to consider larger numbers of primitives. Consider M primitives506

yi(t) which are stored in the network and retrieved by associated static inputs507

xi, where i = 1, . . . ,M . If the network is fed with a linear combination of508

inputs,509

x =
M∑
i=1

λixi, (13)

then it would be expected to generate an output approximately equal to a510

linear combination of the stored primitives,511

y(t) ≈
M∑
i=1

λiyi(t), (14)

resulting in a large space of possible movements. Since the network is also512

capable of performing some limited extrapolation, the weights λi might even513

go beyond the usual range of [0, 1], resulting in an even larger space of pos-514

sible movements. There might be other, nonlinear superpositions possible515

both in biological and artificial networks. However, the conception of linear516

superposition of primitive movement patterns fits well to established theories517

of motor control (Wolpert et al., 2011) and to empirical data (d’Avella et al.,518

2006).519

Training a recurrent network of 1000 neurons even on a supercomputer in520

reasonable time was way out of reach before the advent of reservoir computing521

ten years ago, due to the lack of efficient training algorithms. Considering522

this, it is remarkable that the calculations for our model have been carried523

out on ordinary modern laptops, and the simulation time was about equal524

to real time: for example, 56 simulated seconds of network training took 74525

seconds of real time. Also, it is amazing how fast the FORCE network is526

learning in terms of “lessons”, that is, of subsequent presentation blocks of527
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input/output pairs. The learning of five periodic target functions in parallel,528

four of which were EMG signals of rather irregular shape, took only 8 lessons529

with 6 repetitions of each input/output pair per lesson.530

As one can see in Figure 3, the learning activity abruptly increases when531

a new lesson starts, but then rapidly decreases again to an even lower level532

than before. In a manner of speaking, it looks as if the network was “sur-533

prised” by a new input/output relation and responds with a strong and broad534

burst of learning activity, until it “remembers” already learned input/output535

relations, becomes less and less “surprised” and responds with shorter and536

smaller bursts of learning activity. A similar bursting activity in response to537

novel stimuli is also known to occur in the biological brain (cf. Rutishauser538

et al., 2006).539

One may wonder why the network does not overwrite the already learned540

patterns on entering the next learning lesson. It seems that there is just541

enough abstract space spanned by 1000 neurons and their interconnections542

to store the dynamical information needed for the given learning task with the543

probability of overwriting already stored information being sufficiently small.544

The phenomenon of non-overwriting already stored information is very inter-545

esting in the context of biological learning as it would make it unnecessary to546

allocate new memory space for each learned movement. There would be no547

need for a special location for each particular stored movement; rather, all548

movements could be stored within one and the same neural network across549

its synaptic weights in a non-local fashion.550

A biological network of thousand neurons, to give an impression, would551

represent about ten times the size of a cortical column, which would amount552

to about 75x75 µm of cortical surface (Mountcastle, 1997). In the cerebel-553

lum, the same amount of neurons would occupy a volume of below 0.001554

mm3 (Lange, 1975). When we reduced the network size to 500 neurons,555

the training, validation, and morphing performance dropped considerably,556

although this could be compensated partly (but not fully) by increasing the557

number of repetitions and lessons. The actual number 1000 is of no funda-558

mental significance, though, as we cannot expect that a real-world human559

motor system is exactly designed like a FORCE network. In particular, the560

synaptic weights in a biological network are most probably not fixed and561

random but are also subject to adaptation and optimization. Note that the562

assumption of a completely random reservoir network is the weakest possible563

assumption. Any additional structure might further enhance the capacities564

of the network to generate complex dynamical behavior. For example, it565
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is a topic in contemporary research to implement self-organizing dynamics566

(Lazar et al., 2009) or other optimizations (Wyffels et al., 2008; Wyffels &567

Schrauwen, 2009; Jaeger et al., 2012) into recurrent neural networks. Also, it568

would be interesting to implement a small-world topology (Watts & Strogatz,569

1998) which has been shown to match the connection characteristics of the570

biological brain (Ioannides, 2007).571

Which anatomical structures might come into question as functional re-572

alizers of our model? The selection of adequate motor behavior involves573

conscious decisions and is realized by cortical structures, particularly involv-574

ing the prefrontal cortex (Koechlin et al., 1999; Haynes et al., 2007) and the575

supplementary motor area (Libet, 1985; Soon et al., 2008), the latter being576

the one that generates pre-conscious readiness potentials. The activity of577

these regions would result in an abstract action command that is sent to the578

reservoir in our model to constitute the input. The output of the reservoir579

directly goes to the muscles. Now where does the target function come from?580

A good candidate would be the joint system of premotor and motor cortex.581

The premotor cortex is a region that prepares goal-specific motor actions and582

hosts the mirror neuron system (Rizzolatti & Craighero, 2004). It is a region,583

thus, where both the generation and recognition of goal-specific movement584

patterns is performed. The motor cortex has a roughly somatotopic organi-585

zation (Penfield & Boldrey, 1937; Schieber, 2001) and further processes the586

signals from the premotor cortex into concrete motor commands dedicated to587

individual muscles. According to our model, these motor commands would588

not directly activate the muscles. Rather, the motor commands would be589

sent to the reservoir as a target function, and the reservoir would then gener-590

ate the final muscle activation signals by closely matching its output to the591

received target function. This way, the reservoir would be able to learn the592

association of each target function with the corresponding abstract action593

command which it receives as input, and eventually it would be able to gen-594

erate the correct target function by itself in response to the received action595

command.596

What, lastly, might be the anatomical location of the reservoir? It is597

known that electrical stimulation of the motor cortex causes monkeys to598

make coordinated, complex movements (Graziano et al., 2002). This does599

not imply, however, that the motor cortex must also be the place where the600

patterns are stored. According to our model, complex movement patterns601

are recalled in functionally lower-level structures by the same higher-level602

action commands that once (repeatedly) triggered the movement. Hence it603
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would be expected that by stimulating regions in the motor cortex, complex604

movement patterns stored in the lower-level structures, wherever they are605

located, are accidentally triggered. We believe that there is not one unique606

location for the reservoir, but rather that throughout the entire central ner-607

vous system there are regions that functionally correspond to a reservoir in608

the sense of our model. The already mentioned cortical regions involved in609

the generation of movement patterns might themselves include substructures610

that store these patterns. Another place might be the cerebellum which is611

assumed to be responsible for the modulation of movement patterns and to612

be actively involved in motor learning in a manner similar to that envisaged613

in our model (Marr, 1969; Albus, 1971; Thach et al., 1992; Contreras-Vidal614

et al., 1997; Boyden et al., 2004; Wolpert et al., 2011). The capacities of615

the cerebellum, though, are not restricted to motor tasks but extend also to616

cognitive, emotional, and language functions (Leiner et al., 1993; Timmann617

et al., 2010). According to the modern view, the cerebellum is involved in618

all sorts of tasks that require supervised learning, while the basal ganglia619

and the cerebral cortex are involved in reinforcement learning and unsuper-620

vised learning, respectively (Doya, 2000). Since our model involves supervised621

learning, this may point to the cerebellum rather than to cortical structures.622

Also, the spinal cord may host reservoirs which then would take the role of623

central pattern generators (CPGs). It is known that animal locomotion is624

to a large extent directly caused by activity of CPGs (Brown, 1911; Grill-625

ner, 2006; Ijspeert, 2008), and the same may also hold for humans (Duysens626

& Van de Crommert, 1998; Dietz, 2003). Moreover, there is evidence that627

the CPGs are subject to neuroplasticity (Raineteau & Schwab, 2001; Scivo-628

letto et al., 2007); they are able to re-learn movement patterns, for instance629

with the help of robotic-assisted locomotor training, so that patients with630

incomplete spinal injury may learn to walk again (Mehrholz et al., 2008).631

It should be mentioned that network-based theories of motor learning are632

certainly not new. There is the pioneering work of Marr (1969) and Albus633

(1971) who independently proposed a theory of the cerebellum as a move-634

ment pattern generation and recognition device; Albus specifically presented635

a Perceptron network architecture as a model for the cerebellum. Contreras-636

Vidal et al. (1997) proposed an integrative neural model of cerebellar learn-637

ing for arm-movement control which involves cortex, cerebellum and central638

pattern generators. As a further development, Grossberg & Pearson (2008)639

proposed the LIST PARSE model as a unified model of motor learning and640

motor working memory which involves many cortical structures such as the641
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prefrontal cortex, the sensory cortices and the amygdala. Sussillo & Abbott642

(2009), the inventors of the FORCE network, applied their techniques to643

the kinetics, though not the dynamics, of human movements. A FORCE644

network has also been used to realize a brain-machine interface (BMI) de-645

coder for reaching movements of monkeys (Sussillo et al., 2012). Wyffels &646

Schrauwen (2009) and Jaeger et al. (2012) modeled central pattern genera-647

tors as reservoir networks, but they put their results more into the context648

of robot locomotion. Our model of a flexible motor memory differs from the649

mentioned models in that it is intended to be a simplified and idealized model650

for a small-scale biological network of neurons to store and recall movement651

patterns, and in that it involves a self-active recurrent neural network that is652

capable of generating previously unlearned dynamical output from linearly653

superposed static input without additional specific optimization.654

So far, our model is open-loop only, as there is no feedback from the body655

and its environment that affects the system’s behavior. An enhanced model656

that would enable closed-loop control would require a numerical simulation657

of the interaction between network, body, and environment. It would be a658

promising matter of future research to investigate how a suitably enhanced659

model of a flexible motor memory performs when endowed with a properly660

simulated body and environment, thus when it becomes an embodied sys-661

tem. The gained insights might lead to concrete applications in robotics,662

prosthetics, and rehabilitation from stroke or spinal chord injury.663
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